

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

Pablo Ferrada Martínez

Benjamín Ivorra, Miriam Ruiz Ferrández, Emilio Ruiz Reina

June 9, 2022

Master's Degree in Numerical Simulation in Science and Engineering with COMSOL Multiphysics

Introduction: Solar resource in the world

- 5.6% of Reference Spectrum (AM1.5G) is UVA + UVB for the Tilted Global Irradiance (GTI).
- Atacama Desert receives the highest irradiation in the world, with 7.7% of its energy in the UV range.

A. Marzo, P. Ferrada. Standard or local solar spectrum? Implications for solar technologies studies in the Atacama desert. Re newable Energy 127 (2018), 871-882

Introduction: Solar Spectrum in the Atacama Desert

Irradiance = f (atmospheric composition)

Total Ozone Column (TOC) → UV-B
Aerosol Optical Depth (AOD)
Precipitable Water (PW)
Optical Path Length in atmosphere (altitude)

Interhemispheric differences in TOC

→ Annual dose of UV-B is **35-65% higher in Atacama** than in the south of EU.

 \rightarrow Degradation

R. Cordero et al. *The Solar Spectrum of Atacama Desert*. Scientific Reports 6, Article number: 22457 (2016). R. Cordero et al. *"Ultraviolet radiation in the Atacama Desert"*. Antonie Van Leeuwenhoek. 2018;111(8):1301-1313.

Solar Energy Materials & Solar Cells 236 (2022) 111508

Problem description

- There are differences with respect to reference spectrum: intensity and UV content.
 - → Desert Label for Atacama Desert
- Solar cell is designed for high efficiency under standard testing conditions (STC).
 - → AM1.5G spectrum, 1000 W/m² and 25 °C.
- The PV device exhibits losses when operating at non-standard conditions (no optimum).

A Marzo, P Ferrada "Standard or Local Solar Spectrum? Implications for Solar Technologies Studies in Atacama Desert". Ren. En. 127 (2018), 871.

L. C. Hirst, N. J. Ekins-Daukes. *Fundamental losses in solar cells*. Prog. Photovolt: Res. Appl. 2011; 19:286–293.

F. Lelievre,...,A. Marzo, P. Ferrada et al. *Desert label development for improved reliability and durability of PV modules in harsh desert conditions*. Solar Energy Materials & Solar Cells 236 (2022) 111508.

Objectives

p⁺ boron

emitter

Ag

• To determine optimal parameters of a n-PERT cell when operating under Atacama Desert spectral conditions.

n[⁺]BSF

• To compute the characteristic curve of an optimized n-PERT cell for a whole day in Atacama Desert.

ARC

Passivation

n-PERT

n-type Si

International Technology Roadmap of Photovoltaics (ITRPV) 2022.

Ag:Al

Materials & methods: Stages

uma.es

1. Validation

UNIVERSIDAD

DE MÁLAGA

- 1.1 Fabricate a standard n-PERT solar cell.
- 1.2 Model/simulate the n-PERT under AM1.5G.
 - -Mesh Independence study
- 1.3 Explain differences and improve the model.
- 2. Optimization

2.1 Define obj func, control par, const and output var. 2.2 Configure COMSOL + MATLAB for optimization.

- 3. Prediction
 - 3.1 Use fixed and optimized inputs in the model.
 - 3.2 Calculate the JV curve for a whole day in Atacama D.

Higher Surface area:

F for rear side with tilt angle of 20°

\rightarrow Higher absorption and less reflection $(J_{sc.meas} = 1.17 J_{sc.calc})$

\rightarrow Higher recombination rate (1.7 times more)

A. Fell et al. Input Parameters for the Simulation of Silicon Solar Cells in 2014. IEEE Journal of PV 5 (2015), 1250-1263

- AM1.5G Standard Globa

Materials & methods: Model and optimization

- Model: COMSOL
 - Semiconductor Module
 - Geometry: 1D object
 - Material: c-Si
 - Stationary study
 Parametric Sweep over voltage
 - Direct Solver: MUltifrontal Massively Parallel Solver (MUMPS)
 - 5 dependent variables.
 - Electron concentration, Ne Hole concentration, Ph Boundary electron concentration, n_bnd Boundary hole concentration, p_bnd Electric potential, V

- Optimization in MATLAB
 - Function nPERTopt(x) from COMSOL saved as *m
 - Genetic Algorithm (GA)
 - Script containing input parameters for the GA

Theory: Poisson, drift-diffusion, continuity

Poisson equation $\nabla \cdot (-\varepsilon_r \nabla V) = \rho$

Net charge $\rho = q(p - n + N_d^+ - N_a^-)$

Electron Conc.
$$n = N_C F_{1/2} \left(-\frac{E_c - E_{fn}}{k_B T} \right)$$
 $N_C = 2 \left(\frac{m_e^* k_B T}{2\pi \hbar^2} \right)^{3/2}$

Hole Conc.
$$p = N_V F_{1/2} \left(-\frac{E_{fp} - E_v}{k_B T} \right)$$
 $N_V = 2 \left(\frac{m_h^* k_B T}{2\pi \hbar^2} \right)^{3/2}$

Fermi Integral

$$F_{1/2}(\eta_c) = \int_0^\infty \frac{\eta_c^{1/2}}{1 + e^{x - \eta_c}} dx$$

Relative permittivity of silicon	E _r
Charge density	ho [C/cm³]
Electron, hole concentration	<i>n,p</i> [cm⁻³]
Ionized donor, acceptor impurity	N_d^+ , N_A^- [cm ⁻³]
Eff. Density of states in Cond. Band	<i>N_C</i> [cm⁻³]
Eff. Density of states in Val. Band	<i>N_V</i> [cm⁻³]
Quasi Fermi levels	E_{fn} , E_{fp} [eV]
Equilibrium Fermi Level	$E_{f0}[eV]$
Temperature	<i>T</i> [K]

Doping	$N = N_0 \exp((-d/l)^2)$
Decay length	$l = d_j / \sqrt{ln(\lceil N_0 / N_b \rceil)}$

P. Altermatt. Models for numerical device simulations of crystalline silicon solar cells—a review. J Comput Electron (2011) 10:314–330.

Theory: Poisson, drift-diffusion, continuity

Transport for electrons (e) $J_n = qn\mu_n(N_d^+, T)E + \mu_n k_B T_{\mathscr{G}}\left(\frac{n}{N_c}\right)\nabla n + qnD_{n,th}\nabla \ln(T)$

Transport for holes (h) $J_p = qp\mu_p(N_a^-, T)E - \mu_p k_B T_{\mathscr{G}}\left(\frac{p}{N_V}\right)\nabla p - qpD_{p,th}\nabla \ln(T)$

Continuity for e and h $\frac{\partial n}{\partial t} = \frac{1}{q} (\nabla \cdot \boldsymbol{J}_n) - U_n$ $\frac{\partial p}{\partial t} = -\frac{1}{q} (\nabla \cdot \boldsymbol{J}_p) - U_p$

Net e, h Recombination $U_n = \sum R_{n,i} - \sum G_{n,i}$ $U_p = \sum R_{p,i} - \sum G_{p,i}$

Generation rate for e and h: $G(z) = \frac{4\pi}{hc} (1 - f_{met}) \int_{\lambda_1}^{\lambda_2} \kappa(\lambda) F(\lambda) e^{-\frac{4\pi \kappa z}{\lambda}} [1 - R(\lambda)] d\lambda$

Current density for e, h J_n, J_p [mA/cm²] Electron, hole mobility $\mu_n, \mu_p \,[\text{cm}^2/(\text{V s})]$ Thermal diffusion coefficient $D_{n,th}$, $D_{p,th}$ [cm²/s] **Electric field** *E* [V/m] Recombination rate $R_n, R_p [1/(\text{cm}^3 \text{ s})]$ Solar spectral irradiance $F(\lambda)$ [W/(m² nm))] Extinction coefficient κ Spectral reflection $R(\lambda)$

Results & discussion : Validation

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

Varas, Chile.

Results & discussion: Optimization in MATLAB

Inputs of the Genetic Algorithm

Function to minimize

P=-model.result.numerical('pev1').getReal;

 $[d_{E}, d_{cell}, d_{BSF}, N_{E}, N_{B}, N_{BSF}]$ Maximum values (xmin): [0.2, 150, 0.2, 1e19, 1e14, 1e19] Minimum values (xmax): [1, 200, 1, 1e20, 1e15, 5e20]

Population size (Npop):70Generation N° (Ngen):110Stop criterium (Nsic):10Mutation probability (pmut):0.1Refinement (resfin):0

Description	Parameter	Initial values	AM1.5g	AM1.08
Emitter thickness	d _E (um)	0.65	0.20	0.20
Cell thickness	d _{cell} (um)	180	150	150
BSF thickness	d _{BSF} (um)	0.45	0.33	0.25
Emitter doping	N _E (cm⁻³)	2.44×10 ¹⁹	9.89×10 ¹⁹	9.36×10 ¹⁹
Base doping	N _B (cm ⁻³)	8.44×10 ¹⁴	9.83×10 ¹⁴	9.84×10 ¹⁴
BSF doping	N _{BSF} (cm ⁻³)	6.16×10 ¹⁹	3.87×10 ²⁰	4.12×10 ²⁰

Results & discussion : Cell response, optimized to Atacama Spectrum

- JV of optimized solar cell to AM1.5g and AM1.08
- Table with the JV parameters
 - Optimized case
 - Non-optimized cell

	Optimized case				
	J _{sc} (mA/cm ²)	V _{oc} (mV)	P _{mpp} (W)	FF (%)	Eta (%)
Standard AM1.5g	40.6	641.7	5.5	82.3	21.5
Atacama AM1.08	44.1	639.2	5.9	83.0	23.4

	Non-optimized case				
	J _{sc} (mA/cm ²)	V _{oc} (mV)	P _{mpp} (W)	FF (%)	Eta (%)
Standard AM1.5g	39.2	646.4	5.3	78.7	20.0
Atacama AM1.08	42.2	647.0	5.7	78.9	21.6

	Comparison though the relative difference				
	J_{sc}	V _{oc}	P_{mpp}	FF	Eta
Standard AM1.5g	3.6%	-0.7%	4.3%	4.6%	7.6%
Atacama AM1.08	4.3%	-1.2%	4.7%	5.2%	8.5%

100 ($X_{opt} - X_{non-opt}$)/ $X_{non-opt}$

A. Fell et al. Simplified Device Simulation of Silicon Solar Cells Using a Lumped Parameter Optical Model. Journal of Photovoltaics 6:3 (2016), 611-616.

M. M. Chowdhury. Approximation of Carrier Generation Rate in Common Solar Cells and Studies for Optimization of n⁺p Silicon Solar Cell for AM1.5G and AM1.5D. 2012 7th Int. Conf. on Electrical and Computer Engineering 20-22 December 2012, Dhaka, Bangladesh.

Results & discussion : Response for different spectra along the day

Conclusions and outlook

- The solar cell model is valid for a family of cases
 - Cell structure: p⁺nn⁺
 - Monofacial and bifacial case
 - For any illumination; only front, only rear or simultaneous
- The model combined with MATLAB allowed to optimize the device under a representative Atacama Spectrum
 - Thickness and doping level of the emitter, cell (base), back surface field
- The model combined with Java allowed to predict the performance for a whole day in Atacama Desert
 - Automation of calculations and less time consumption
- Application to PV module response, provided that absorption of c-Si is known

Thanks for your attention

pablo.ferrada@uantof.cl

Master's Degree in Numerical Simulation in Science and Engineering with COMSOL Multiphysics

uma.es

Materials & methods: Data

- Measured and own data
 - Geometrical aspects are known.
 - Doping level was experimentally measured.
 - Carrier lifetime was obtained from reference.
 - JV curve under STC (1000 W/m², 25° C AM1.5G).

P. Ferrada et al. Interface analysis of Ag/n-type Si contacts in n-type PERT solar cells. Prog Photovolt Res Appl. 2020;28:358–371.

• Inputs

- Atmospheric parameters at Platform (PSDA).
- Atacama Spectra based on Simple Model of Atmospheric Radiative Transfer of Sunshine.
- Solar cell temperature
- Refractive index for c-Si: real and complex.
- Absorptance of c-Si in a PV module with SunSolve.

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

Wavelength, λ (nm)

Spectrum of Atacama Desert

Results & discussion: Mesh independence

- Mesh independence study with voltage from 0 to 1000 mV in steps of 0.1 mV.
- Electrical response (J_{sc} , V_{oc} , P_{mpp} and Eta) vs number of mesh elements.

Materials & methods: Optimization

Atacama Desert Spectra (summer solstice, 2018)

Material degradation

F. Lelievre, R. Couderc, N. Pinochet, L. Sicot, D. Munoz, R. Kopecek, P. Ferrada et al. *Desert label development for improved reliability and durability of photovoltaic modules in harsh desert conditions*. Solar Energy Materials & Solar Cells 236 (2022) 111508.

Theory: mobility

 $\mu_n = \mu_{min,n} + \frac{\mu_{0,n}}{1 + \left(\frac{N}{N_0}\right)^{\alpha}} \qquad \mu_p = \mu_{min,p} + \frac{\mu_{0,p}}{1 + \left(\frac{N}{N_0}\right)^{\alpha}}$ Electron, hole mobility $\mu_{min,n} = \mu_{min,n}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_1} \qquad \mu_{min,p} = \mu_{min,p}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_1}$ Minimum values $\mu_{0,n} = \mu_{0,n}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_2} \qquad \qquad \mu_{0,p} = \mu_{0,p}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_2}$ Reference values $N_{0,n} = N_{0,n}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_3} \qquad N_{0,p} = N_{0,p}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_3} \qquad N = N_a^- + N_d^+$ Concentration $\alpha = \alpha_{0,n}^{ref} \left(\frac{T}{T_{ref}}\right)^{\beta_4}$ Parameter

N. Stem, M. Cid. Studies of phosphorus Gaussian profile emitter silicon solar cells. Materials Research, Vol. 4, No. 2, 143-148, 2001.

$$\frac{dV_{oc}}{dW} = -\frac{kT}{q}\frac{1}{W}$$

$$J = q \int_0^W G(z) dz \qquad \qquad G(z) = \frac{4\pi}{hc} (1 - f_{met}) \int_{\lambda_1}^{\lambda_2} \kappa(\lambda) F(\lambda) e^{-\frac{4\pi \kappa z}{\lambda}} [1 - R(\lambda)] d\lambda$$

Decreasing W \rightarrow increasing Voltage and decreasing Current Density

Power (P) depends on J V

The increase in V_{oc} causes P to increase more than it decreases due to the reduction of J_{sc}

R. Brendel, H.J. Queisser, On the thickness dependence of open circuit voltages of p-n junction solar cells, Sol. Energy Mater. Sol. Cells. 29 (1993) 397–401.