

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

Pablo Ferrada Martínez

Benjamín Ivorra, Miriam Ruiz Ferrández, Emilio Ruiz Reina

June 9, 2022

Master's Degree in Numerical Simulation in Science and Engineering with COMSOL Multiphysics

Introduction: Solar resource in the world

Tot. Ozone Column Aerosol Opt. Depth **P**recipitable **W**ater **O**ptical **P**ath Length

- 5.6% of Reference Spectrum (AM1.5G) is UVA + UVB.
- Atacama Desert receives the highest irradiation in the world, with 7.7% of its energy in the UV range.

Marzo et al. Standard or local solar spectrum? Implications for solar technologies studies in the Atacama desert. Renewable Energy 127 (2018), 871-882

Cordero et al. The Solar Spectrum of Atacama Desert. Scientific Reports 6, Article number: 22457 (2016). Cordero et al. "Ultraviolet radiation in the Atacama Desert". Antonie Van Leeuwenhoek. 2018;111(8):1301-1313.

Annual dose of UV-B is **35-65% higher in Atacama** than in the south of EU \rightarrow Degradation

1000

2000

5000

Solar Energy Materials & Solar Cells 236 (2022) 111508

Problem description

- There are differences with respect to reference spectrum: intensity and UV content.
 - → Desert Label for Atacama Desert
- Solar cell is designed for high efficiency under standard testing conditions (STC).
 - → AM1.5G spectrum, 1000 W/m² and 25 °C.
- The PV device exhibits losses when operating at non-standard conditions (no optimum).

F. Lelievre,...,A. Marzo, P. Ferrada et al. *Desert label development for improved reliability and durability of PV modules in harsh desert conditions*. Solar Energy Materials & Solar Cells 236 (2022) 111508.

A Marzo, P Ferrada "Standard or Local Solar Spectrum? Implications for Solar Technologies Studies in Atacama Desert". Ren. En. 127 (2018), 871.

L. C. Hirst, N. J. Ekins-Daukes. *Fundamental losses in solar cells*. Prog. Photovolt: Res. Appl. 2011; 19:286–293.

Solar spectral irradiance, (Wm⁻²nm⁻¹)

Objectives

p⁺ boron

Ag

emitter

To determine optimal parameters of a n-PERT cell when operating under Atacama Desert spectral conditions.

n[⁺]BSF

To compute the characteristic curve of an optimized n-PERT cell for a whole day in Atacama Desert. •

ARC

Passivation

P. Ferrada, A. Marzo et al. "Potential for photogenerated current for Si based PV modules in the Atacama Desert", Solar Energy 144 (2017), 580-593.

n-type passivated emitter and rear totally diffused

n-PERT

n-type Si

International Technology Roadmap of Photovoltaics (ITRPV) 2022.

Ag:Al

U**uma.es**

Materials & methods: Stages

1. Validation

1.1 Fabricate a standard n-PERT solar cell.

1.2 Model/simulate the n-PERT under AM1.5G.

-Mesh Independence study

1.3 Explain differences and improve the model.

2. Optimization

2.1 Define *obj func, control par, const* and *output var.*2.2 Configure COMSOL + MATLAB for optimization.

3. Prediction

3.1 Use fixed and optimized inputs in the model.

3.2 Calculate the JV curve for a whole day in Atacama D.

Higher Surface area:

→ Higher absorption and less reflection (J_{sc,meas}=1.17 J_{sc,calc})

→ Higher recombination rate (1.7 times more)

A. Fell et al. *Input Parameters for the Simulation of Silicon Solar Cells in 2014*. IEEE Journal of PV 5 (2015), 1250–1263

Materials & methods: Model and optimization

- Model: COMSOL
 - Semiconductor Module
 - Geometry: 1D object
 - Material: c-Si
 - Stationary study
 - Parametric Sweep over voltage
 - Direct Solver: MUltifrontal Massively Parallel Solver (MUMPS)

A Pickibo Component Add Pickabo Component Add Pickabo Component Information Parameters Provide Component Parameters Provide Component Parameters Provide Component Parameters Pickabo	decidades Unitalies - Backet All Addatational Concensional Addatation Concensional Addatation Concensional Addatation Physics	S.JV Met		
odel Builder				
	Semicomburger Moreusi Mode			
# S Germany 1				
Interval 1, 675				
Tom Union (fin)				
P - Matemala	Override and Contribution			
 A Semiconductor (semil) 	 Equation 			
Semiconductor Material Model 1	Show equation any more			
Arora Mobility Model (L) 1	and equation according.			
a Annulation 1	study it semiconductor idoatorium			
Zeeo Osarge 1	$p + = q(p \cdot n + N_a^* \cdot N_a)$			
a insulator interface 1	$(q(E_1 \circ E_2))$ $(q(E_2 \circ E_1))$			
Continuity/Heberojunction 1	$n = n_i r_A \exp\left(\frac{k_B T_i}{k_B T_i}\right), p = n_i r_B \exp\left(\frac{k_B T_i}{k_B T_i}\right)$			
Initial Values 1	$I = an u \cdot \nabla F_{\tau} + u_{\tau} k_{0} T G(a/N, N_{0} + an O_{\tau}, \nabla in(T))$			
Geom Doping Model: p+ emitter	A many DE - 1 & TO's (A TE- and Divert)			
 Analytic Doping Model: n type Si base 	$1^{b} = abb^{b} \mathbf{x} \mathbf{e}^{b} \cdot b^{b} \mathbf{x}^{b} \cdot abb^{b} \mathbf{u}^{b} (abb^{b} \mathbf{u}^{b}) \mathbf{x}^{b} - abb^{b} \mathbf{u}^{b} \mathbf{x}^{b} \mathbf{u}^{b})$			
Geom. Doping Model: n+ 8SF	$E_c = (V + \chi_0)$, $E_s = (V + \chi_0 + E_{p0})$			
 User Defined Generation 1 	$Ef_0 = V_{00,40} - V_{0,040}$			
User Defined Generation 1 hole				
Direct Recombination 1	* Model Input	× 1		
 Tup-Assisted Recombination T 	Temperature			
 Auger Recombination 1 	T they defined	- 1		
Metal Contact at the rear side: Ag/n type Si	1 Concorrent			
Metal Contact at the mont side: AgA/o type Si	10	. K		
T m Mon 1	Material Properties			
A De Bourge 1				
Matura	Relative permitterty:			
22 Dataset Milan	Cr. From material			
Tables.	Band gap:			
h > Inergal invels	E.e. from material			

- Optimization in MATLAB
 - Function nPERTopt(x) from COMSOL saved as *m
 - Genetic Algorithm (GA)
 - Script containing input parameters for the GA

Theory: Poisson, drift-diffusion, continuity

Poisson equation $\nabla \cdot (-\varepsilon_r \nabla V) = \rho$

Net charge $\rho = q(p - n + N_d^+ - N_a^-)$

Electron Conc.
$$n = N_C F_{1/2} \left(-\frac{E_c - E_{fn}}{k_B T} \right)$$
 $N_C = 2 \left(\frac{m_e^* k_B T}{2\pi \hbar^2} \right)^{3/2}$

Hole Conc.	$p = N_V F_{1/2} \left(-\frac{E_{fp} - E_v}{k_B T} \right)$	$N_V = 2 \left(\frac{m_h^* k_B T}{2\pi\hbar^2}\right)^{3/2}$
------------	--	--

Fermi Integral

$$F_{1/2}(\eta_c) = \int_0^\infty \frac{\eta_c^{1/2}}{1 + e^{x - \eta_c}} dx$$

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

Relative permittivity of silicon	\mathcal{E}_r
Charge density	ho [C/cm ³]
Electron, hole concentration	<i>n,p</i> [cm⁻³]
Ionized donor, acceptor impurity	N_d^+ , N_A^- [cm ⁻³]
Eff. Density of states in Cond. Band	N _C [cm ⁻³]
Eff. Density of states in Val. Band	<i>N_V</i> [cm⁻³]
Quasi Fermi levels	$\mathit{E_{fn}}$, $\mathit{E_{fp}}$ [eV]
Equilibrium Fermi Level	$E_{f0}[eV]$
Temperature	Т [К]

Doping	$N = N_0 \exp((-d/l)^2)$
Decay length	$l = d_j / \sqrt{ln(\lceil N_0 / N_b \rceil)}$

P. Altermatt. Models for numerical device simulations of crystalline silicon solar cells—a review. J Comput Electron (2011) 10:314–330. 7

Transport for electrons (e) $J_n = qn\mu_n(N_d^+, T)E + \mu_n k_B T_{\mathscr{G}}\left(\frac{n}{N_c}\right)\nabla n + qnD_{n,th}\nabla \ln(T)$

Transport for holes (h)
$$J_p = qp\mu_p(N_a^-, T)E - \mu_p k_B T_{\mathscr{I}}\left(\frac{p}{N_V}\right) \nabla p - qp D_{p,th} \nabla \ln(T)$$

Continuity for e and h $\frac{\partial n}{\partial t} = \frac{1}{q} (\nabla \cdot \boldsymbol{J}_n) - U_n$ $\frac{\partial p}{\partial t} = -\frac{1}{q} (\nabla \cdot \boldsymbol{J}_p) - U_p$

Net e, h Recombination $U_n = \sum R_{n,i}$ -

$$\sum R_{n,i} - \sum G_{n,i}$$

$$U_p = \sum R_{p,i} - \sum G_{p,i}$$

Generation rate for e and h:
$$G(z) = \frac{4\pi}{hc} (1 - f_{met}) \int_{\lambda_1}^{\lambda_2} \kappa(\lambda) F(\lambda) e^{-\frac{4\pi \kappa z}{\lambda}} [1 - R(\lambda)] d\lambda$$

Current density for e, h J_n , J_p [mA/cm²]

Electron, hole mobility μ_n , μ_p [cm²/(V s)]

Thermal diffusion coefficient $D_{n,th}$, $D_{p,th}$ [cm²/s]

Electric field *E* [V/m]

Recombination rate R_n , R_p [1/(cm³ s]

Solar spectral irradiance $F(\lambda)$ [W/(m² nm))]

Extinction coefficient κ Spectral reflection $R(\lambda)$

Results & discussion : Validation

 $P_{mpp} = P_{mpp,0} - R_{ser} I_{mpp}^{2}$

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

Metallization fraction $F_{1,1}$ (%)

10 12 14

16 18 20 22

-75

--- n⁺. BSF

Conference on Low Dimensional Structures

and Devices, 2-6 December 2019At: Puerto

Varas, Chile.

Results & discussion: Optimization in MATLAB

Inputs of the Genetic Algorithm

Function to minimize

P=-model.result.numerical('pev1').getReal;

Maximum values (xmin): Minimum values (xmax):

 $[d_{E}, d_{cell}, d_{BSF}, N_{E}, N_{B}, N_{BSF}]$

[0.2, 150, 0.2, 1e19, 1e14, 1e19] [1, 200, 1, 1e20, 1e15, 5e20]

Population size (Npop): 70 Generation N° (Ngen): 110 Stop criterium (Nsic): 10 Mutation probability (pmut): 0.1 Refinement (resfin): 0

Description	Parameter	Initial values	AM1.5g	AM1.08
Emitter thickness	d _e (um)	0.65	0.20	0.20
Cell thickness	d _{cell} (um)	180	150	150
BSF thickness	d _{BSF} (um)	0.45	0.33	0.25
Emitter doping	N _E (cm ⁻³)	2.44×10 ¹⁹	9.89×10 ¹⁹	9.36×10 ¹⁹
Base doping	N _B (cm ⁻³)	8.44×10 ¹⁴	9.83×10 ¹⁴	9.84×10 ¹⁴
BSF doping	N _{BSF} (cm ⁻³)	6.16×10 ¹⁹	3.87×10 ²⁰	4.12×10 ²⁰

Results & discussion : Cell response, optimized to Atacama Spectrum

- JV of optimized solar cell to AM1.5g and AM1.08
- Table with the JV parameters
 - Optimized case
 - Non-optimized cell

	Optimized case				
	J _{sc} (mA/cm ²)	V_{oc} (mV)	P _{mpp} (W)	FF (%)	Eta (%)
Standard AM1.5g	40.6	641.7	5.5	82.3	21.5
Atacama AM1.08	44.1	639.2	5.9	83.0	23.4

	Non-optimized case				
	J _{sc} (mA/cm ²)	V_{oc} (mV)	P_{mpp} (W)	FF (%)	Eta (%)
Standard AM1.5g	39.2	646.4	5.3	78.7	20.0
Atacama AM1.08	42.2	647.0	5.7	78.9	21.6

	Comparison though the relative difference					
	J	V _{oc}	P _{mpp}	FF	Eta	
Standard AM1.5g	3.6%	-0.7%	4.3%	4.6%	7.6%	
Atacama AM1.08	4.3%	-1.2%	4.7%	5.2%	8.5%	

100 ($X_{opt} - X_{non-opt}$)/ $X_{non-opt}$

Optimization of n-PERT Solar Cell under Atacama Desert Solar Spectrum

A. Fell et al. Simplified Device Simulation of Silicon Solar Cells Using a Lumped Parameter Optical Model. Journal of Photovoltaics 6:3 (2016), 611-616.

M. M. Chowdhury. Approximation of Carrier Generation Rate in Common Solar Cells and Studies for Optimization of n⁺p Silicon Solar Cell for AM1.5G and AM1.5D. 2012 7th Int. Conf. on Electrical and Computer Engineering 20-22 December 2012, Dhaka, Bangladesh.

Results & discussion : Response for different spectra along the day

Conclusions and outlook

- The solar cell model is valid for a family of cases
 - Cell structure: p⁺nn⁺
 - Monofacial and bifacial case
 - For any illumination; only front, only rear or simultaneous
- The model combined with MATLAB allowed to optimize the device under a representative Atacama Spectrum
 - Thickness and doping level of the emitter, cell (base), back surface field
- The model combined with Java allowed to predict the performance for a whole day in Atacama Desert
 - Automation of calculations and less time consumption
- Application to PV module response, provided that absorption of c-Si is known

Thanks for your attention

pablo.ferrada@uantof.cl

Master's Degree in Numerical Simulation in Science and Engineering with COMSOL Multiphysics