# Quantum vs classical thermal model for resistive random access memories



### **E. Moreno** E. Ruiz-Reina (M.Sc. Supervisor)

CTU in Prague & UMA

enrique@moreno.ws

### 1 Why?

### 2 Modeling the cell

- Implementations: Physics
- Implementations: Studies

### 3 Results and conclusions



MUCOM

155

### A fundamental element



### Density vs Efficiency vs Cost



### Beyond the Von Neumann algebra

MUCOM



E. Moreno E. Ruiz-Reina Quantum thermal transport in RRAM

### Migrations and characterization



### Something in Common









HfO Metallic filament RRAM/ReRAM

Lightning

SiOx ReRAM filament Oxygen vacancy conduction Actual SiOx filament reconstructed from slice by slice AFM conductance analysis at UCL

< □ > < □ > < □ > < □ >

Slice-by-slice Atomic Force Microscope (AFM) analysis of ReRAM/RRAM filaments suggest that like lightning there are many possible conduction path options before one becomes dominant.



### Classical approach

MICOM



### Semi-Classical approach



< ロト < 同ト < ヨト < ヨト

### Full quantum approach

+ ∂Ω<sub>01</sub> **∗**∂Ω<sub>12</sub> →∂Ω<sub>23</sub>  $\Omega_1$ - ∂Ω<sub>24</sub> ∂Ω<sub>04</sub> ∂Ω<sub>13</sub> →∂Ω<sub>1'3'</sub> ...∂Ω<sub>34</sub> Ω ∂Ω<sub>3'4'</sub>  $W \equiv \Omega_1 \cup \Omega_1'$ \* $\partial \overline{\Omega_{0'4'}}$  \* $\partial \Omega_{0'4'}$  $CF \equiv \Omega_2$  $\Rightarrow \overline{\partial \Omega_{0'1'}} \Rightarrow \overline{\partial \Omega_{0'3'}}$  $HfO_2 \equiv \Omega_3 \cup \Omega_3$ •∂Ω<sub>33'</sub> \*∂Ω<sub>0'1'</sub>  $Ti \equiv \Omega_4 \cup \Omega_4$ /acuum level Energy 2 Wfw V<sub>QM</sub>(r) EF-deVOW(r) w ou(r) . D(r)

1.55

$$\nabla \cdot \vec{J}_{e}(\vec{r}) = \sum_{j} Q_{j,v}(\vec{r})$$

$$\vec{J}_{e}(\vec{r}) = \sigma(\vec{r})\vec{E}(\vec{r})$$

$$\vec{E}(\vec{r}) = -\nabla V(\vec{r})$$

$$\vec{h} \cdot \left(\vec{J}_{1}(\vec{r}_{s}) - \vec{J}_{2}(\vec{r}_{s})\right) = \sum_{j} Q_{j,s}(\vec{r}_{s})$$

$$+$$

$$\nabla \cdot \vec{D}(\vec{r}) = \rho_{v}(\vec{r})$$

$$V_{QM}(\vec{r}) = V(\vec{r}) \text{ if } \vec{r} \in \partial\Omega_{13} \cup \partial\Omega_{23} \cup \partial\Omega_{34}$$

$$\vec{D}(\vec{r}) = \epsilon_{r}\epsilon_{0}\vec{E}_{QM}(\vec{r})$$

$$\vec{h} \cdot \vec{D}(\vec{r}) = \hat{n} \cdot \vec{D}_{0}(\vec{r}) \text{ if } \vec{r} \in \partial\Omega_{33},$$

$$H\psi(\vec{r}) = E\psi(\vec{r}) \quad \vec{r} \in \Omega_{3}$$

$$n_{\rho}(\vec{r}) = \sum_{m} \sum_{i} \frac{2g_{i,m} |\Psi_{i,m}(\vec{r})|^{2}}{1 + e^{\frac{E_{i,m}-E_{F}}{k_{B}T(\vec{r})}} } \quad \hat{n} \cdot \nabla\psi(\vec{r}) = j \left(\frac{1}{\hat{n}} \sqrt{\frac{2(E-V)}{\hat{n} \cdot m_{eff}^{-1} \cdot \hat{n}}}\right) \psi(\vec{r}) \text{ if } \vec{r} \in \partial\Omega_{33}$$

æ

(日) (四) (日) (日) (日)

### Physics and studies

- 🔺 🌐 Global Definitions
  - Pi Parameters 1
    - 😼 MATLAB : Quantum current density function
    - 😻 Default Model Inputs
  - 🕨 💷 Material
- Component 2D (comp)
  - Definitions
  - Geometry 2
  - Materials

- Semiconductor Module
  - AC/DC Module
  - Heat Transfer Module

COMSOL Multiphysics

- LiveLink<sup>™</sup> for MATLAB®
- Wall Distance (wd)
- Electric Currents entire RRAM cell (ec)
- Heat Transfer in Solids (ht)
- Schrödinger Equation (schr)
- ▷ < Electrostatics: Potential on HfO2 (es)
- Multiphysics
- 🖻 🛦 Mesh 2
- Classic approach
- Semi-Classic approach
- Full quantum approach (High-Precision and slow, Matlab function)
- 🖻 🖲 Results

MUCOM

### Studies

- 🔺 👒 Classic approach
  - 🖾 Step 1: Stationary Classic approach
  - Solver Configurations
    - 🚽 Job Configurations
- 🔺 👒 Semi-Classic approach
  - 🖾 Step 1: Stationary-Semi-Classic approach
  - Solver Configurations
    - ቭ Job Configurations
- Full quantum approach (High-Precision and slow, Matlab
  - 🖾 Step 1: Stationary
  - Step 2: Schrödinger-Poisson
  - Solver Configurations
    - 暑 Job Configurations

### Study I: Classical approach

#### Electric Currents entire RRAM cell (ec)

- Current Conservation Cell-RRAM/Filament
- Axial Symmetry
- Electric Insulation
- Initial Values
- Current Conservation Filament
- 🕨 🚍 Ground
- 🖻 😑 Terminal
- 🕨 🥌 Terminal : Dirichlet quantum potential
- $\triangleright \stackrel{\scriptsize{\scriptsize{\scriptsize{ = 0}}}}{=} {\rm Boundary}\ {\rm Current}\ {\rm Source}$  : Quantum current density through a Matlab function  $\stackrel{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{ Wr}}}}}}{=} {\rm Equation}\ {\rm View}$
- Heat Transfer in Solids (ht)
  - 🕨 🐸 Solid
  - Initial Values
  - Axial Symmetry
  - 🕨 🗁 Thermal Insulation
  - Isothermal Domain Interface
  - Temperature
  - Heat Flux (Continue)
    - Hereit Equation View

- Multiphysics
- Electromagnetic Heating (emh)
- Schrödinger-Poisson Coupling (schrp)

▲ I Wall Distance (wd)

Distance Equation

Wall (distance origin)

Axial Symmetry

# Equation View

Initial Values

- Values of Dependent Variables
- Initial values of variables solved for
- Settings: Physics controlled
- Values of variables not solved for
- Settings: Physics controlled
- Store fields in output
- Settings: All

- Global Definitions
- 🖌 🕂 Component 2D (Comp)
  - Definitions
  - Wall Distance (Wd)
  - Electric Currents Entire RRAM Cell (Ec)
    - Current Conservation Cell-RRAM/Filament
    - Axial Symmetry
    - Electric Insulation
    - Initial Values
    - Current Conservation Filament
    - Ground
    - Terminal
    - 🕫 Terminal : Dirichlet Quantum Potential
    - 🗟 Boundary Current Source : Quantum Current
  - Heat Transfer in Solids (Ht)
  - Schrödinger Equation (Schr)
  - Electrostatics: Potential on HfO2 (Es)
  - Multiphysics

< □ > < 凸

- 💥 Electromagnetic Heating (Emh)
- le schrödinger-Poisson Coupling (Schrp)

### Study II: Semi-Classical approach

| <ul> <li>Current Conservation Centrator</li> <li>Carteria Symmetry</li> <li>Electric Insulation</li> <li>Initial Values</li> <li>Current Conservation Filament</li> <li>Ground</li> <li>Terminal</li> <li>Terminal : Dirichlet quantum p</li> <li>Boundary Current Source : Quantum Source : Quantum</li></ul> | AM/Filament         ▲ Multiplication         ▶ > Distance Equation         ▶ > > Distance Equation         ▶ > > > > > > > > > > > > > > > > > > |                                                                                            | <ul> <li>Modify model configuration for study step</li> <li>Modify model configuration for study step</li> <li>Electrics</li> <li>Current Conservation Cell-RRAM/Filament</li> <li>Axial Symmetry</li> <li>Electric Insulation</li> <li>Initial Values</li> <li>Current Conservation Filament</li> <li>Ground</li> <li>Terminal</li> <li>Terminal</li> <li>Terminal</li> <li>Schrödinger Equation (Schr)</li> <li>Electrostatics: Potential on HfO2 (Es)</li> <li>Multiphysics</li> <li>Multiphysics</li> </ul> |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <ul> <li>⊮<sup>4</sup> Equation View</li> <li>Heat Transfer in Solids (<i>ht</i>)</li> <li>▷ □ Solid</li> <li>▷ □ Initial Values</li> <li>▷ □ Axial Symmetry</li> <li>▷ □ Thermal Insulation</li> <li>▷ □ Exothermal Domain Interface</li> <li>▷ □ Temperature</li> <li>▷ □ Heat Flux (Continue)</li> <li>№ Continue</li> <li>№ ≤</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method: So<br>Study: Cli<br>Selection: Au<br>Store fields in<br>Settings: All                                                                                                                                                                                                                                                        | lution<br>assic approach, Stationary Classi<br>Itomatic (single solution)<br>I output<br>I | fö Schrödinger-Poisson Coupling (Schrp)<br>c approach                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |

### Study III-1: Full quantum approach

- Electric Currents entire RRAM cell (ec)
  - Current Conservation Cell-RRAM/Filament
  - Axial Symmetry
  - Electric Insulation
  - Initial Values
  - Current Conservation Filament
  - 🕨 🚍 Ground
  - 🕨 😑 Terminal
  - 🕨 🥌 Terminal : Dirichlet quantum potential
  - Boundary Current Source : Quantum current
    - Hereit Equation View
- Heat Transfer in Solids (ht)
  - Solid
  - Initial Values
  - Axial Symmetry
  - Thermal Insulation
  - 🕨 는 Isothermal Domain Interface
  - Temperature
  - Heat Flux (Continue)
    - Equation View
- Multiphysics
  - Electromagnetic Heating (emh)
  - Schrödinger-Poisson Coupling (schrp)

- 4 1 Schrödinger Equation (schr)
  - Effective Mass
  - Electron Potential Energy
  - Axial Symmetry
  - 🕨 🔚 Zero Flux
  - Initial Values
  - Open Boundary : Plane waves
    - <sup>₩f</sup> Equation View
- - Charge Conservation
  - Axial Symmetry
  - 🕨 🐸 Zero Charge
  - 🕨 🍋 Initial Values
  - Terminal Up/T1
  - Terminal Down/T2
  - Electric Displacement Field / Continuity
  - Space Charge Density : Residual ionized dopants
    - <sup>₩f</sup> Equation View
- 4 📑 Wall Distance (wd)
  - Distance Equation
  - Axial Symmetry
  - Initial Values
  - Wall (distance origin)
    - # Equation View

### Study III-2: Full quantum approach

|           | 4 👓 Full quantum approach (High-                            | 4 👓 Full quantum approach (High-Precision and slow, Matlab function) |                        |                                                        |                                                            |        |                                      |                                                  |                                                   |    |  |
|-----------|-------------------------------------------------------------|----------------------------------------------------------------------|------------------------|--------------------------------------------------------|------------------------------------------------------------|--------|--------------------------------------|--------------------------------------------------|---------------------------------------------------|----|--|
|           | Step 1: Stationary                                          |                                                                      |                        |                                                        | Step 1: Stationary                                         |        |                                      |                                                  |                                                   |    |  |
|           | Bis Step 2: Schrödinger-Poisson                             |                                                                      |                        |                                                        | Step 2: Schrödinger-Poisson                                |        |                                      |                                                  | <ul> <li>Values of Dependent Variables</li> </ul> |    |  |
| * Ph      | ysics interface                                             | Solve for                                                            | Equation form          | Label: Schrödinger-Poisson                             |                                                            |        |                                      | Initial valu                                     | - Initial values of variables solved fo           |    |  |
| • w       | all Distance (wd)                                           |                                                                      | Automatic (Stationary) | <ul> <li>Study Settings</li> </ul>                     |                                                            |        | Settings:                            | Settings: Physics controlled                     |                                                   |    |  |
| Ele       | ectric Currents entire RRAM cell (ec)                       | ec) 🗹 Automatic (Stationary)                                         |                        |                                                        |                                                            |        | - Values of variables not solved for |                                                  |                                                   |    |  |
| He        | at Transfer in Solids (ht)                                  | Automatic (Stationary)                                               |                        | Eigenvalue solver:                                     |                                                            | ARPACK |                                      | Cottings: Physics controlled                     |                                                   |    |  |
| Sc        | hrödinger Equation (schr)                                   |                                                                      | Automatic (Stationary) | Eigenvalue search method:                              |                                                            | Ma     | nual                                 | settings:                                        | seturigs. Physics controlled                      |    |  |
| • Ele     | ectrostatics: Potential on HfO2 (es)                        | al on HfO2 (es) 🛛 🗹 Automatic (Station                               |                        | Desired number of eigenvalues:                         |                                                            | ~      | 6                                    | Store fields in output                           |                                                   |    |  |
| * м       | ultiphysics couplings                                       | Solve for Equation form                                              |                        |                                                        |                                                            | rad/   | s                                    | Settings:                                        | All .                                             |    |  |
| • Ele     | ectromagnetic Heating (emh)                                 | 🗹 🛛 Auto                                                             | omatic (Stationary)    | Search for eigenvalues around:                         |                                                            |        |                                      | rad/s                                            |                                                   |    |  |
| Sc        | Schrödinger-Poisson Coupling (sc     Automatic (Stationary) |                                                                      |                        |                                                        |                                                            |        |                                      | 100                                              |                                                   |    |  |
| - Malur   |                                                             |                                                                      |                        | Eigenvalue search method around shift. Closest in abso |                                                            |        |                                      | solute value                                     |                                                   |    |  |
| * Value   | values of Dependent variables                               |                                                                      |                        | Use real symmetric eigenvalue solver: Automatic        |                                                            |        |                                      |                                                  | -                                                 |    |  |
| - Initial | values of variables solved for                              |                                                                      |                        | B                                                      | eal symmetric eigenvalue solver cor                        | sisten | cy check                             |                                                  |                                                   |    |  |
| Settings  | ettings: Physics controlled •                               |                                                                      |                        | Results While Solving                                  |                                                            |        |                                      |                                                  |                                                   |    |  |
| - Value   | Values of variables not solved for                          |                                                                      |                        | <ul> <li>Physics and Variables Selection</li> </ul>    |                                                            |        |                                      |                                                  |                                                   |    |  |
| Settings  | User controlled                                             |                                                                      | •                      |                                                        | 4-dife                                                     |        |                                      |                                                  |                                                   |    |  |
| Method    | hod: Initial expression                                     |                                                                      |                        |                                                        | woony model configuration for study step                   |        |                                      |                                                  |                                                   |    |  |
| Study:    | Semi-Classic approach_Stationary-Semi-Classic approach      |                                                                      |                        |                                                        | Physics interface Solve f                                  |        | or Equation form                     |                                                  |                                                   |    |  |
| Coloctio  | Automatic (circle colution)                                 |                                                                      |                        | •                                                      | Wall Distance (wd)                                         |        | Automatic (Stationary)               |                                                  |                                                   |    |  |
| Selectio  | selection: Automatic (single solution)                      |                                                                      |                        | ۲                                                      | Electric Currents entire RRAM cell (ec)                    |        | Automatic (S                         | Automatic (Schrödinger-Poisson)                  |                                                   |    |  |
| - Store   | Store fields in output                                      |                                                                      |                        | ۲                                                      | at Transfer in Solids (ht)                                 |        | Automatic (S                         | Automatic (Schrödinger-Poisson)                  |                                                   |    |  |
| Settings  | ettings: All •                                              |                                                                      |                        | •                                                      | <ul> <li>Schrödinger Equation (schr)</li> </ul>            |        | Automatic (S                         | Automatic (Schrödinger-Poisson)                  |                                                   |    |  |
|           | * Iterations                                                |                                                                      |                        |                                                        | <ul> <li>Electrostatics: Potential on HfO2 (es)</li> </ul> |        |                                      | Automatic (Schrödinger-Poisson)                  |                                                   |    |  |
|           |                                                             | · iterations                                                         |                        | Multiphysics couplings                                 |                                                            |        | Solve for                            | Equation form<br>Automatic (Schrödinger-Poisson) |                                                   |    |  |
|           | Те                                                          | fermination method: Fixed number of iterations                       |                        | ۲                                                      | Electromagnetic Heating (emh)                              |        |                                      |                                                  |                                                   |    |  |
|           |                                                             | umber of iterat                                                      | ions: 5                | ۲                                                      | Schrödinger-Poisson Coupling (sc                           | hrp)   |                                      | Automatic (Schrö                                 | dinger-Poissor                                    | 1) |  |

< 回 ト < 三 ト <

### Convergence error (n-Full quantum approach)



MUCOM

### Full guantum approach: MATLAB function



### Mesh quality: minimum element quality > 0.75



### **RESULTs & CONCLUSIONs**



### There are important differences in temperatures

In a nano-sized device, we should not expect high accuracy from a classical descriptor.

### Simulations allow characterization

Fundamental parameters of a RRAM memory filament can be obtained from the combination of experimental data and simulation results.

### THANK YOU ALL

### People

MUCOM

- Infinite thanks to my very dear wife Galya for her generosity given the time this master has stolen from her.
- I want to thank my colleagues Miloslav and Lukas for their understanding and the time they have allowed me to dedicate to this Master.
- I would also like to thank the commendable work of my doctoral student Cristina, from the UGR in collecting data on materials.

### MUCOM 2021/2022

## Thank you for your attention!

Part of this work has been published with the

DOI:10.1016/j.chaos.2022.112247 in Chaos, Solitons and Fractals.

The remaining part of the work is under peer review