

Modelización de ensayo de tribología para obtener las propiedades de desgaste de material para posterior optimización

María Begoña Serrano Castillo

Javier Gómez (Advanced Material Simulation)

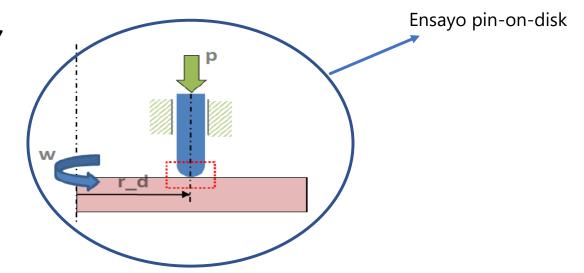
Benjamin Ivorra

24 de Junio de 2021

umales

Contenido

- Fundamentos teóricos
- Geometría, Materiales y Mallado
- Ecuaciones e Interfaces Físicas
- Condiciones de Contorno
- Estudios
- Resultados obtenidos
- Conclusiones



Fundamento Teórico

• Tribología: ciencia y tecnología de la interacción entre superficies en movimiento relativo e involucra el estudio de la fricción, **desgaste** y lubricación y de las prácticas relacionadas

con las mismas. Norma ASTMG99-17

• El desgaste ocurre cuando hay desprendimiento de asperezas durante un contacto.

Fundamento Teórico

Ecuación de Archard para desgaste

$$V = \frac{KWs}{H}$$

s: desplazamiento relativo entre las partes

V: volumen del material desgastado

K: *coeficiente de desgaste*

H: dureza de Brinell del material suave del par de contacto

W: fuerza normal

Ecuación modificada:

$$\frac{dh(t)}{dt} = kp(t)v_s(t)$$

 $\frac{dh(t)}{dt} = \dot{w} : ratio \ de \ desgaste \ [\frac{m}{s}]$ $k: constante \ de \ desgaste \ [Pa^{-1}]$ $p: presi\'on \ de \ contacto$ $v_s: velocidad \ de \ deslizamiento$

Geometría, Materiales y Mallado

Geometria

Geometry 1

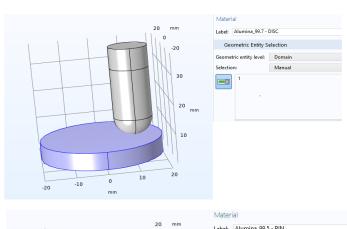
Cylinder 1 (cyl1)

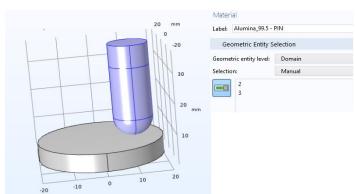
Cylinder 2 (cyl2)

Sphere 1 (sph 1)

Union 1 (unit)

Partition Domains 1 (pard 1)

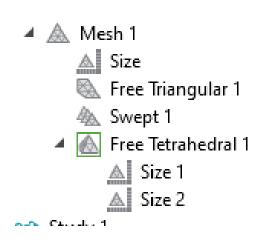

Form Assembly (fin)



Geometría, Materiales y Mallado

• Materiales: Alumina -> alta dureza, largo tiempo de desgaste

**	Property	Variable	Value	Unit	Property group
\checkmark	Density	rho	3.93[g/cm^3]	kg/m³	Basic
~	Young's modulus	E	393[GPa]	Pa	Young's modulus and Poisson's
~	Poisson's ratio	nu	0.23	1	Young's modulus and Poisson's
	Coefficient of thermal expansion	alpha_iso	8e-6[1/K]	1/K	Basic
	Heat capacity at constant pressure	Ср	900[J/(kg*K)]	J/(kg·K)	Basic
	Thermal conductivity	k_iso ; kii	27[W/(m*K)]	W/(m·K)	Basic

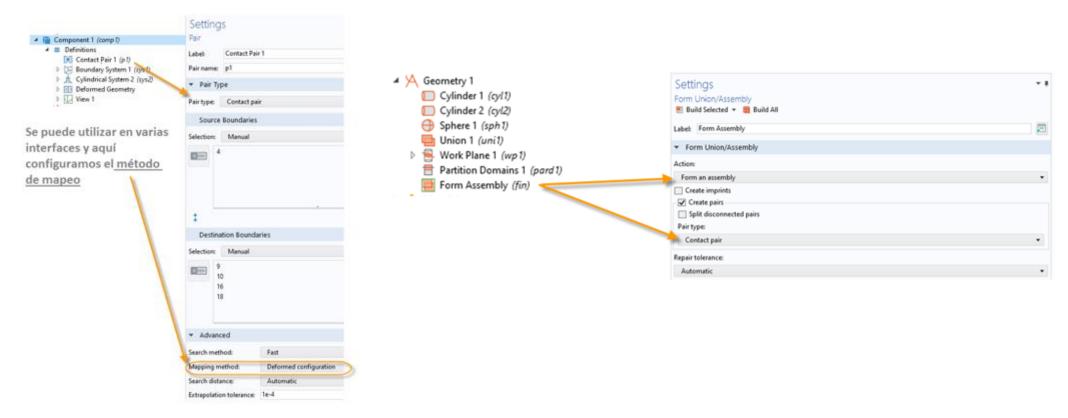

▼ Material Contents							
**	Property	Variable	Value	Unit	Property group		
~	Density	rho	3.88[g/cm^3]	kg/m³	Basic		
~	Young's modulus	E	379[GPa]	Pa	Young's modulus and Poisson's		
~	Poisson's ratio	nu	0.23	1	Young's modulus and Poisson's		
	Coefficient of thermal expansion	alpha_iso	8e-6[1/K]	1/K	Basic		
	Heat capacity at constant pressure	Ср	900[J/(kg*K)]	J/(kg·K)	Basic		
	Thermal conductivity	k_iso ; kii	27[W/(m*K)]	W/(m·K)	Basic		



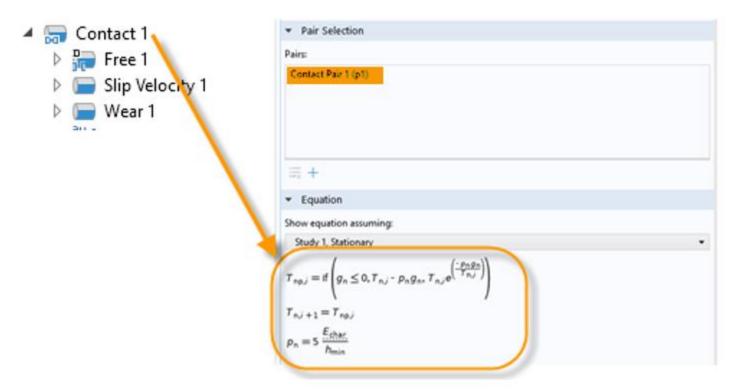
Geometría, Materiales y Mallado

Mallado:

Importancia de distinguir el tamaño en las zonas de contacto, al material más blando se le asigna el tamaño más fino

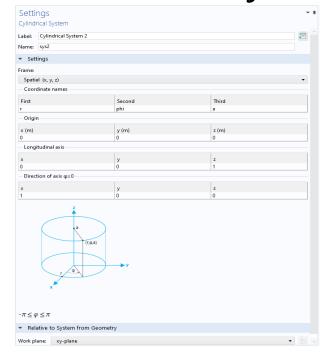

- Única física, Solid Mechanics:
 - Solid Mechanics (solid)
 - 🕨 🏣 Linear Elastic Material 1
 - Free 1
 - Initial Values 1

- Solid Mechanics (solid)
 - Linear Elastic Material 1
 - ▶ Pree 1
 - Initial Values 1
 - Prescribed Displacement 1
 - Roller 1
 - Fixed Constraint 1
 - Boundary Load 1
 - ▶ 등 Contact 1
 - Spring Foundation 1


• Hay deformación de geometría en el contacto

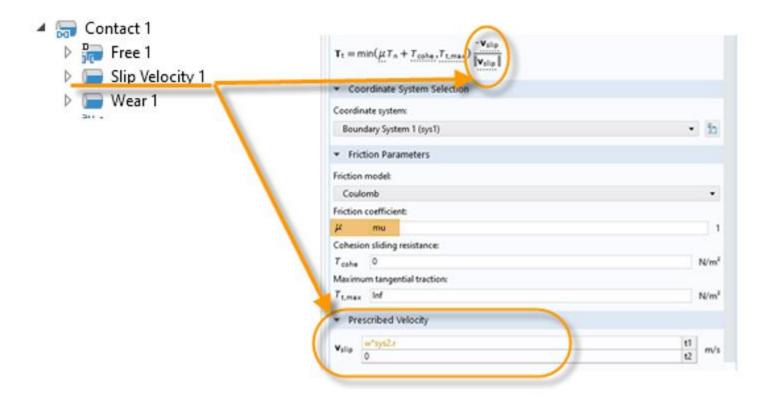
• La interfaz de Contact contiene Wear y Slip Velocity

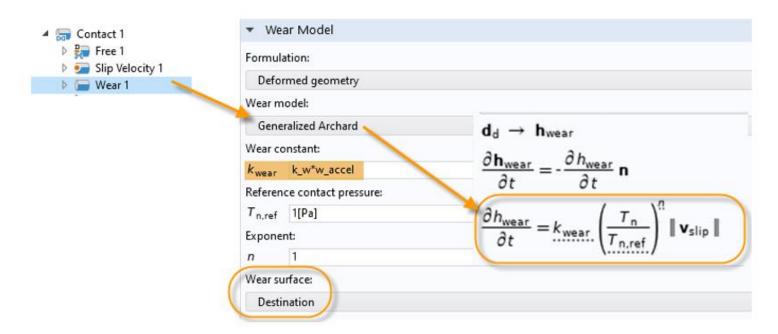
El contacto se estudia en estacionario y es la parte donde se condiciona la brecha o el espacio de contacto entre las piezas.



• Slip Velocity, se basa en el sistema de referencia que se haya

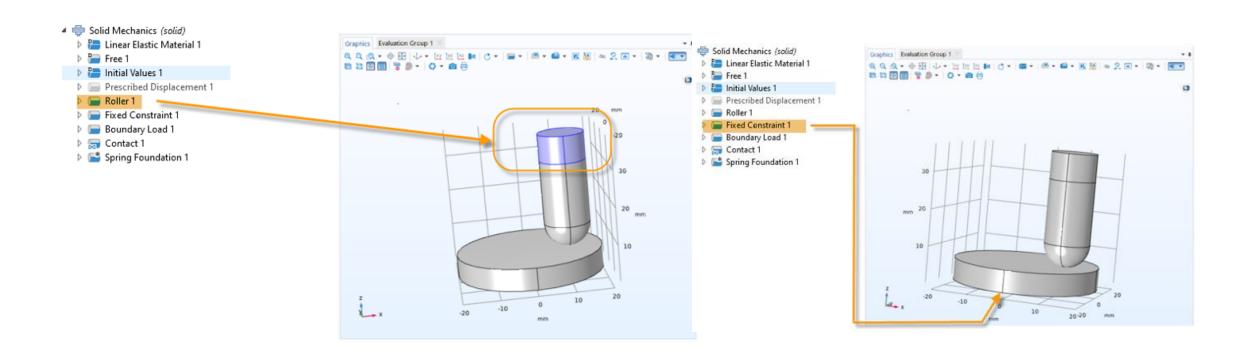
definido en el modelo, en este trabajo se utiliza un sistema


cilíndrico

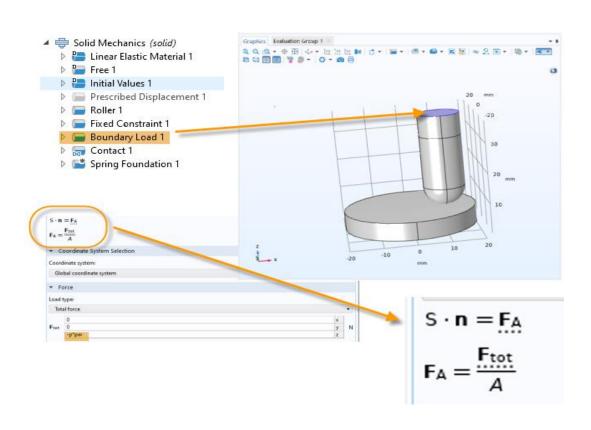

• Slip Velocity

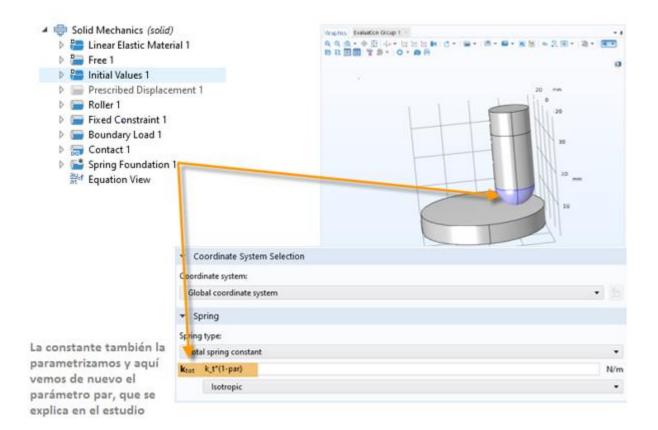
• Wear, ecuación de Archard

 T_n :presión de contacto $T_{n,ref}$: de referencia n:exponente adimensional (=1)

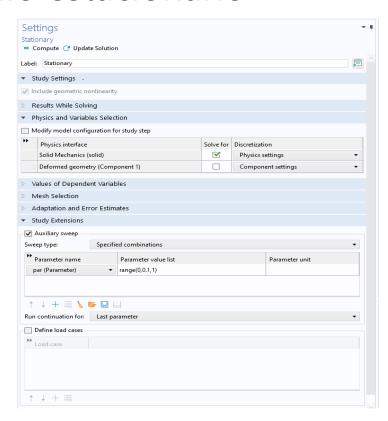

Condiciones de Contorno

- Roller
- Fixed Constraint
- Boundary Load
- Spring Foundation


Condiciones de Contorno

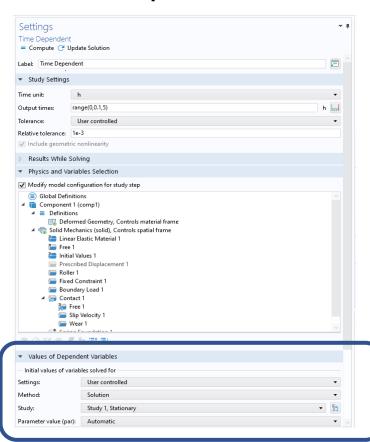


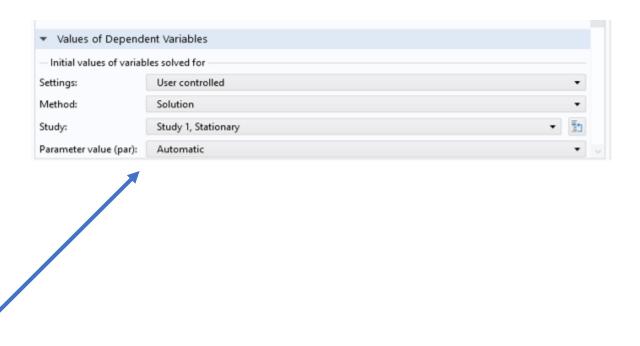
Condiciones de Contorno



Estudios

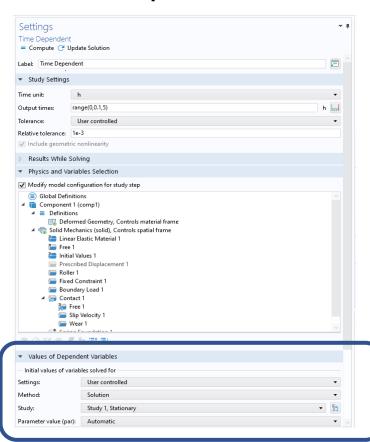
Estudio estacionario

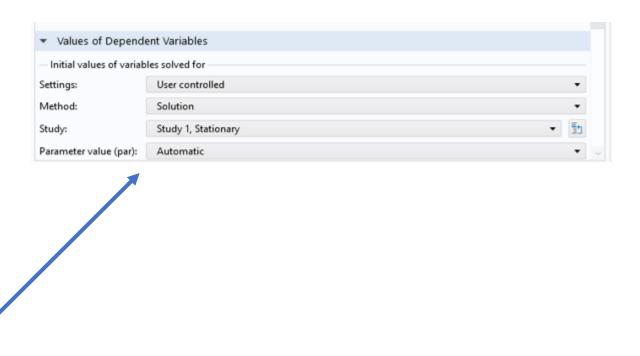

Se le añade un barrido auxiliar para ayudar el resolvedor con los problemas de restricciones en el modelo al comienzo



Estudios

Estudio temporal





Estudios

Estudio temporal

Estudios – Optimización en MATLAB

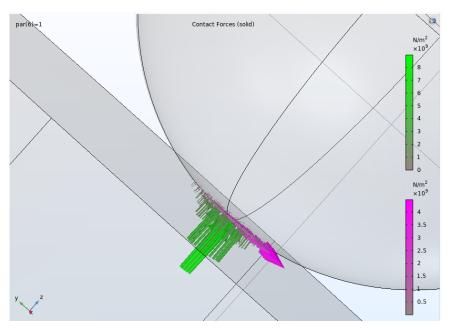
- Guardar el modelo Comsol como archivo Matlab (xxxx.m)
- "Limpiar" el código de Comsol y separarlo según corresponda
- Crear una tabla numérica ficticia con la que comparar
- Crear funciones para calcular diferencia entre puntos, función de mínimos cuadrados
- Función lectura el código de Comsol
- Aplicar la función de Matlab, fminunc

Estudios – Optimización en MATLAB

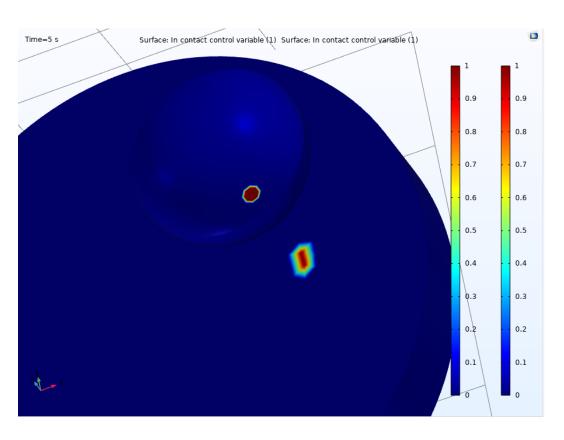
Resultado de dividir el código original de Comsol

Estudios – Optimización en MATLAB

• Funciones:

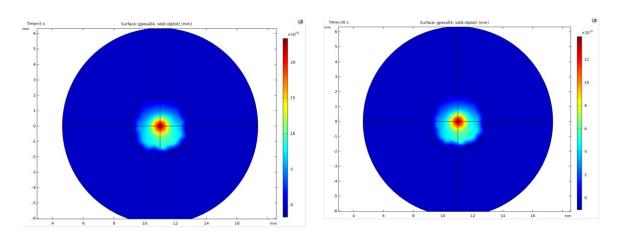

```
11 -
            else
12 -
                ynum(i) = dnum(i) + ynum(i-1);
13 -
            end
14 -
        end
        plot(xnum, ynum, 'r');
15 -
16
17 -
        x1=xnum:
18 -
        y1=ynum;
19 -
        x2=xexp;
20 -
        y2=yexp;
21 -
        xminl=min(x1);
22 -
        xmaxl=max(x1);
        xmin2=min(x2);
23 -
24 -
        xmax2=max(x2);
        xmin=max(xmin1,xmin2);
25 -
26 -
        xmax=min(xmax1,xmax2);
27 -
        xlin=linspace(xmin, xmax, 100);
28 -
        y interl=interpl(xl,yl,xlin);
29 -
        y inter2=interp1(x2,y2,xlin);
```

```
22 - k0=2.0;
23 - f=@(k)fl(k,xexp,yexp,fileID);
24 - [kopt,fval,exitflag,output]=fminunc(f,k0);
```



Resultados obtenidos

Fuerzas de contacto



Contacto en ambas partes

Resultados obtenidos

x10¹³

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

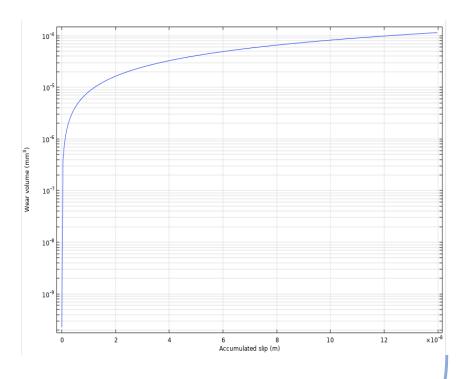
0.2

0.1

0.9

Slip distance

Presión de contacto



Resultados obtenidos

Time (s)	Accumulated wear depth (mm^3)
0.0000	2.2941E-10
0.10000	3.8257E-7
0.20000	7.6490E-7
0.30000	1.1472E-6
0.40000	1.5296E-6
0.50000	1.9119E-6
0.60000	2.2942E-6
0.70000	2.6765E-6
0.80000	3.0588E-6
0.90000	3.4411E-6
1.0000	3.8234E-6
1.1000	4.2057E-6
1.2000	4.5879E-6
1.3000	4.9702E-6
1.4000	5.3525E-6
1.5000	5.7348E-6
1.6000	6.1170E-6
1.7000	6.4993E-6
1.8000	6.8815E-6
1.9000	7.2638E-6

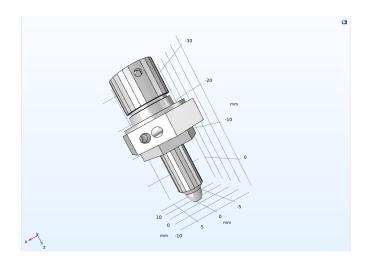
Time (s)	Accumulated slip (m)	Wear volume (mm^3)
0.0000	0.0000	2,2941E-10
0.10000	4.6613E-10	3.8257E-7
0.20000	9.3225E-10	7.6490E-7
0.30000	1.3984E-9	1.1472E-6
0.40000	1.8645E-9	1.5296E-6
0.50000	2.3306E-9	1.9119E-6
0.60000	2.7967E-9	2.2942E-6
0.70000	3.2628E-9	2.6765E-6
0.80000	3.7289E-9	3.0588E-6
0.90000	4.1950E-9	3.4411E-6
1.0000	4.6611E-9	3.8234E-6
1.1000	5.1272E-9	4.2057E-6
1.2000	5.5932E-9	4.5879E-6
1.3000	6.0593E-9	4.9702E-6
1.4000	6.5254E-9	5.3525E-6
1.5000	6.9915E-9	5.7348E-6
1.6000	7.4575E-9	6.1170E-6
1.7000	7.9236E-9	6.4993E-6
1.8000	8.3897E-9	6.8815E-6
1.9000	8.8557E-9	7.2638E-6

4	Α	В	С
	0	1,54221E-27	1,5422E-27
	2,21077E-10	1,92054E-20	3,0844E-27
	4,42154E-10	3,58235E-20	1,9205E-20
	6,6323E-10	5,30022E-20	5,5029E-20
	8,84307E-10	7,43829E-20	1,0803E-19
	1,10538E-09	9,88448E-20	1,8241E-19
	1,32646E-09	1,23907E-19	2,8126E-19
	1,54754E-09	1,47187E-19	4,0517E-19
	1,76861E-09	1,67534E-19	5,5235E-19
1	1,98969E-09	1,84672E-19	7,1989E-19
	2,21077E-09	1,98774E-19	9,0456E-19
	2,43184E-09	2,09765E-19	1,1033E-18
	2,65292E-09	2,17459E-19	1,3131E-18
	2,874E-09	2,21838E-19	1,5306E-18
	3,09508E-09	2,23055E-19	1,7524E-18
	3,31615E-09	2,21395E-19	1,9754E-18
	3,53723E-09	2,17226E-19	2,1968E-18
	3,75831E-09	2,10958E-19	2,4141E-18
1	3,97938E-09	2,03032E-19	2,625E-18
	4,20046E-09	1,93898E-19	2,8281E-18
	4,42154E-09	1,84005E-19	3,022E-18
	4,64261E-09	1,73776E-19	3,206E-18
	4,86369E-09	1,63594E-19	3,3797E-18
	5,08477E-09	1,53781E-19	3,5433E-18
	5,30584E-09	1,44591E-19	3,6971E-18
	5,52692E-09	1,36222E-19	3,8417E-18
	5,748E-09	1,28842E-19	3,9779E-18
	5,96907E-09	1,22611E-19	4,1068E-18
	6,19015E-09	1,17664E-19	4,2294E-18
	6,41123E-09	1,14065E-19	4,347E-18
	6,6323E-09	1,11792E-19	4,4611E-18

Tabla ficticia utilizada en Matlab

Valores derivados de Comsol y representación gráfica

Conclusiones


- Configuración del concepto funciona y abre la posibilidad de estudios futuros combinando desgaste en la otra pieza o, mutuo
- Largo periodos de simulación para visualizar la profundidad de desgaste en este tipo de materiales cerámicos
- La posibilidad de enlace de COMSOL con MATLAB para este tipo de optimizaciones da muchas facilidades de cálculo
- Estudio de desgaste utilizando el concepto de geometría deformada, actualiza las condiciones de contacto durante la simulación
- Utilización de un factor, Wear acceleration, para reducir largos periodos de tiempo

Conclusiones

 Actualmente se está incorporando el concepto estudiado al tornillo de la válvula

GRACIAS

