

Simulación 3D de la distribución espacial de especies químicas asociadas a la corrosión del par Zn-Fe 3D simulation of the spatial distribution of chemical species associated to the corrosion of the Zn-Fe couple

Autor: António Alexandre da Cunha Bastos

Tutor: Juan Manuel Paz García Tutor: Emilio Ruiz Reina

25 de Junio de 2021

Máster Propio Universitario en Simulación Numérica en Ciencia e Ingeniería con COMSOL Multiphysics

Contents

- Introduction
- Objective
- Geometry
- Mesh
- Equations and Physical interfaces
- Results and Discussion
- Conclusions
- Future work

Introduction

Galvanised steel

Cathodic protection with Zn sacrificial anodes

Introduction

Objective

- Go beyond these sketches,
- Be able to numerically simulate the corrosion process,
- Replicate the existing experimental results.

Geometry

Label:	Parameters Geometry	

Parameters

Name	Expression	Value	Description
R1	15[mm]	0.015 m	Radius of electrochemical cell
R2	0.5[mm]	5E-4 m	Radius of electrodes
dist	2[mm]	0.002 m	Distance between the center of electrodes
height	7[mm]	0.007 m	Thickness of the solution layer

- 1. Zinc (anode) 2. Iron (cathode) 3. Solution top layer
- 4. Symmetry plane 5. Cell walls
- 6. Epoxy mount

Equations and Physical Interfaces

Tertiary Current Distribution, Nernst-Plank Interface

water-based with electroneutrality charge conservation model

(mass balance of chemical species)

 $\frac{\partial c_i}{\partial t} = -\nabla \cdot J_i + R_i$

(molar flux, Nernst-Planck equation)

$$J_i = -D_i \nabla c_i - z_i u_i F c_i \nabla \phi + c_i \vartheta^0$$

(electroneutrality condition) maintained by H⁺ and OH⁻ (and Kw)

 $\sum_{i}^{n} z_i c_i = 0$

Species	<i>c_iº</i> (mol m ⁻³)	Z _i	<i>D_i</i> (x10 ⁹ m ² s ⁻¹)
0 ₂	0.23	0	1.96
Na⁺	5	+1	1.23
Cl-	5	-1	1.19
H⁺	-	+1	9.31
OH-	-	-1	5.26
Fe ²⁺	10 ⁻³	+2	0.65
Zn ²⁺	10 ⁻³	+2	0.7

Boundary conditions

Zinc $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$	
$i_{Zn} = i_{0,Zn} \ 10^{\frac{\eta}{A_{Zn}}}$	
$\eta = \phi_s - \phi_l - E_{eq}$	

Iron
$O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^- (aq)$
$\begin{split} i_{O_2,Tafel} &= -i_{0,O_2} \ 10^{\left(\frac{\eta}{A_{O_2}}\right)} \\ i_{O_2} &= \frac{i_{O_2,Tafel}}{1 + \left \frac{i_{O_2,Tafel}}{i_{lim}}\right } \end{split}$

Parameter	Value
E _{Zn} ⁰	-1.004 V _{SCE}
i _{o,Zn}	0.1 A m ⁻² ; 4.48 A m ⁻²
A _{Zn}	22 mV, 28±3 mV
E _{Fe} ⁰	-0.681 V _{SCE}
İ _{0,Fe}	0.28 A m ⁻²
A _{Fe}	0.154 V
E_{O2}^{0}	0.650 V _{SCE}
i _{0,O2 on Zn}	0.888 x 10 ⁻⁴ A m ⁻²
A _{O2, on Zn}	-0.055 V
і _{0,О2 оп Fe}	0.888 A m ⁻²
A _{O2, on Fe}	-0.055 V
İ _{lim,O2}	0.2 – 0.5 A m ⁻²

3D simulation of the Zn-Fe galvanic corrosion

Boundary conditions

Tertiary Current Distribution, Nernst-Planck (tcd)
 Domain B Electrolyte 1

 (5,6) No Flux 1
 (5,6) I Insulation 1
 Initial Values 1
 (1) Electrode Surface Zn
 (2) Electrode Surface Fe
 (3) Concentration 1
 (4) Symmetry 1
 (3) Flux 1

Initial values & Concentration

Species	<i>c_i</i> ⁰ (mol m ⁻³)
02	0.23
Na⁺	5
Cl-	5
H⁺	-
OH-	-
Fe ²⁺	10 ⁻³
Zn ²⁺	10 ⁻³

Flux 1

Insulation: $-\boldsymbol{n} \cdot J_i = 0$

No flux: $-\boldsymbol{n} \cdot \boldsymbol{i}_l = 0$

$$F_{O_2} = \frac{\partial c_{O_2}}{\partial n} = F_{O_2,max} \left(1 - \frac{c_{O_2}}{c_{O_2}^{sat}} \right)$$

$$c_{O_2}^{sat}$$
(mol/m³) = 0.23 $e^{(-3.63 \times 10^{-4} \times c_{Cl})}$

Results

E_{couple} , I_{galv} and ΔE in solution, from experiments and from numerical modelling.

	Evnerimental	Polarization curves		Tafel equation	
	Experimental –	Mesh1	Mesh2	Mesh1	Mesh2
E_{couple} (V _{SCE})	-1.015	-0.934	-0.934	-1.005	-1.007
<i>I_{galv}</i> (10 ⁻⁷ A)	7.5	7.15	7.15	1.86	1.96
Δ <i>Ε</i> (mV)	12	17	17	7	7
Computing time		1 min 40 s	34 min 34 s	2 min 54 s	1 h 43 min 48 s

 $E_{couple},\,I_{galv}$ and ΔE with time: Mesh2 and polarization curves.

Time	Ecouple (V _{SCE})	lgalv (10 ⁻⁷ A)	ΔE (mV)
1 µs	-0.9310	6.9967	24
1 ms	-0.9310	6.9965	24
1s	-0.9315	6.9625	23
1 h	-0.9335	7.1208	18
1 d	-0.9340	7.1525	17

 E_{couple} , I_{galv} and ΔE with different concentrations of NaCl.

[NaCl] / M	Ecouple (V _{SCE})	Igalv (10 ⁻⁷ A)	ΔE (mV)
0.005	-0.934	7.15	17
0.05	-0.939	7.56	3
0.5	-0.940	7.63	0.3

13

- Location of the map where expected - Values close to the experimental Current density in solution

- Values close to the experimental

--

- Location of the maps where expected Values close to the experimental

- Zinc produced where expected.

- Values close to the experimental.

Homogeneous chemical (precipitation) reactions

Reaction	log(K) at 25°C
$Zn^{2+} + OH^{-} \Leftrightarrow Zn(OH)^{+}$	5.05
$Zn(OH)^+ + OH^- \Leftrightarrow Zn(OH)_2(aq)$	6.06
$Zn(OH)^{+} + OH^{-} \Leftrightarrow Zn(OH)_{2}(s)$	3.0
$Zn(OH)_2(aq) \Leftrightarrow Zn(OH)_3^-$	2.5

- High bulk value in experiment not present in simulation. Region of depletion of Zn²⁺ around the cathode seen on
- experiment not predicted by the simulation.

Conclusions

This model was able to replicate most of the experimental observations.

The main problem is the lack of natural convection, with the consequent development of a diffusion layer extending to the entirety of the simulation domain.

Divergences were observed in the maps for Zn²⁺ and Cl⁻ but it is possible that the reasons lie on the experimental side (bad microelectrodes response).

A negative concentration appeared in some of the O_2 maps, particularly in the cases with higher current densities.

Future work (improvements)

i) Include natural convection,

ii) Add homogeneous chemical (precipitation) reactions,

iii) Simulations with solution evaporation,

iv) Consider the volume decrease of the corroding metal as it corrodes

Natural convection

$$J_{i} = -\left(D_{i} + D_{\mu conv}^{ref}\right) \nabla c_{i} - z_{i} u_{i} F c_{i} \nabla \phi \qquad D_{\mu conv}^{ref} = 1.5072 \cdot D^{ref} \left(\frac{d}{\delta^{ref}}\right)^{4}$$