

Desarrollo y validación experimental de un modelo numérico de la tecnología de fusión VIM (Vacuum Induction Melting) para superaleaciones base níquel.

Pablo Garcia Michelena

Emilio Ruiz Reina

31 de Julio de 2020

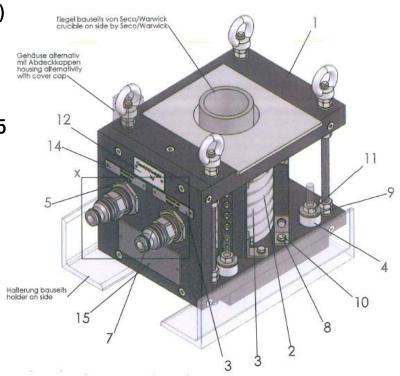
Contenido

- Introducción y Objetivos
- Descripción General
- Fundamentos Teóricos
- Ecuaciones, Interfaces Físicas y Condiciones de Contorno
- Materiales
- Geometría, Mallado y Estudios
- Resultados Obtenidos
- Conclusiones y Líneas Futuras

uma.es

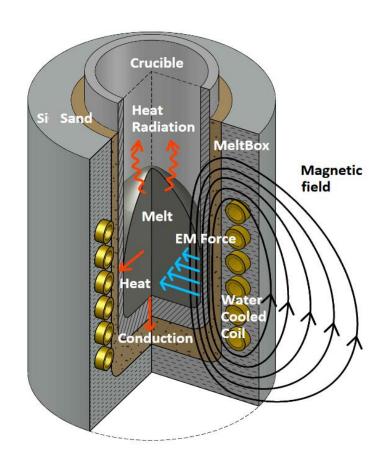
Introduccion y Objetivos

- Desarrollar una herramienta numérica de modelización multifísica de los procesos de calentamiento y fusión por inducción en vacío.
- Gracias al modelo desarrollado será posible estudiar el efecto de cada parámetro de proceso en el fenómeno de inducción electromagnética e identificar aquellos con mayor relevancia y su mutua interacción.
- VIM es una tecnología de fusión en vacío que permite reducir el contenido de oxígeno y nitrógeno de las aleaciones, lo que implica una microestructura con menor número de inclusiones y defectos asegurando una correcta composición química



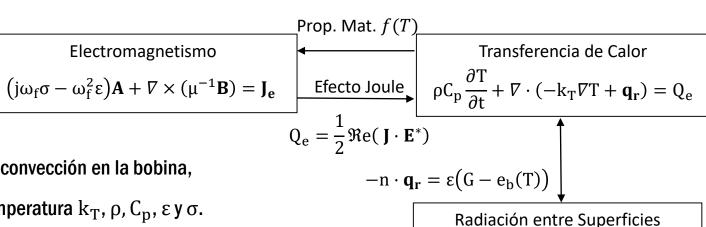
Descripción General

- Mondragon Goi Eskola Politeknikoa (MGEP) cuenta con una instalación de escala semiindustrial para fusión en vacío y/o atmósfera protectora y con crisol intercambiable (ISM/VIM)
- El equipo está sensorizado contiene un pirómetro óptico de doble onda para la medición y
 registro de la temperatura del caldo, un sistema integrado de balance energético y la
 eficiencia mediante captación en NI, dos cámaras de video para la visualización de la fusión, 5
 puertos de entrada para el acople de termopares tipo K, C y S, un sensor de presión de vacío
 de la cámara.
- El crisol, es el recipiente donde se deposita el metal fundido, es una alúmina puediendo soportar temperaturas superiores a 1700°C El metlbox que es la caja que protege la bobina este fabricado de un material cerámico.
- Dos bombas realizan el vacío de aire mantienen una presión de trabajo de 10-2 mbar. La cámara de acero que confina las líneas del campo magnético dentro del horno y sella el vacío



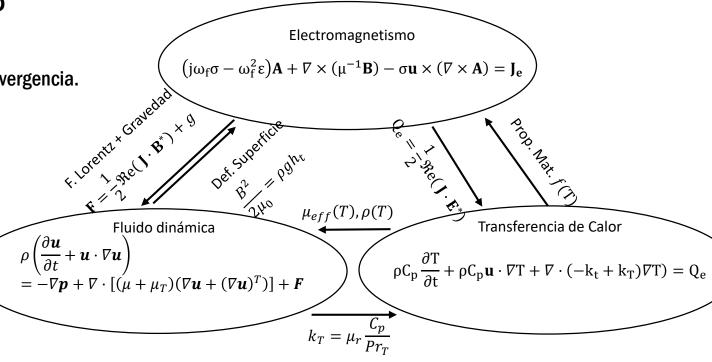
Fundamento Teórico

- Ley de Ampére una corriente AC genera un campo magnético.
- Ley de Faraday-Lenz inducción de un voltaje en la carga con una intensidad en función de la frecuencia
- Las corriente inducidas, Focault se disipan en forma de calor debido al efecto Joule.
- La corriente superficial blinda el campo magnético externo induciendo un nuevo campo magnético en dirección opuesta al campo externo generando el efecto Skin.
- Fuerzas de Lorentz hacen que la carga levite, manteniéndolo alejado de las paredes del crisol.
- Las líneas del campo magnético de las corrientes inducidas dentro de la parte interna del líquido son cerradas generando un flujo recirculado dentro del crisol cerámico, homogeneizando la composición y la temperatura.
- La transferencia con el medio se debido a los mecanismos de radiación y conducción.



Ecuaciones, Interfaces Físicas y Condiciones de Contorno

- Modelo Acoplado Térmico-Electromagnético
- Campos Magneticos dominio de la Frecuencia
- Single Conductor Coil, Magnetic Insulation, n-A=0
- Heat Transfer in Solids dominio Temporal
- Surface to Ambient Radiation, Refrigeración mediante convección en la bobina,
- No linealidad de los materiales dependencia con la temperatura k_T , ρ , C_p , ϵ y σ .
- "Surface to Surface Radiation" flujo de calor debido a la concentricidad y paralelismo entre el crisol y la carga.
- Interfaces Multifisicas, Electromagnetic Heating y "Heat Transfer with Surface to Surface Radiation" termino fuente de energía y flujo de calor.



Ecuaciones, Interfaces Físicas y Condiciones de Contorno

Modelo Acoplado Térmico-Electromagnético-CFD

- CFD. RANS modelo $k-\omega$
- Flujo Multifase "Level Set" y "Phase Field". Errores de Convergencia.
- $h_t = \frac{B^2}{2\mu_0 \rho g} \rightarrow \%$ 5 de la longitud total.
- Wall Funcition. Slip Superficie Libre + No Slip Paredes.
- Acoplamiento Multifísico
- Fuerzas de Lorentz + Gravedad Fuerza Volumétrica
- Non Isothermal Flow. Aproximación de Boussinesq

uma.es

Materiales

- Caracterización Termofisica de la aleación en estado Solido, mediante ensayos de Dilatómetro, Laser Flash y DSC
- $\lambda(T) = \rho(T) \cdot \alpha(T) \cdot C_P(T)$
- Para considerar el cambio de fase del material se han de establecer también las temperaturas de transición entre la fase sólida y líquida que se determinan mediante la técnica de DSC.
- Propiedades en estado líquido referencias bibliografícas.

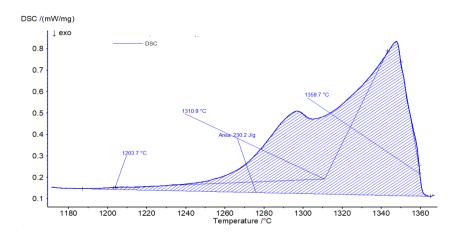
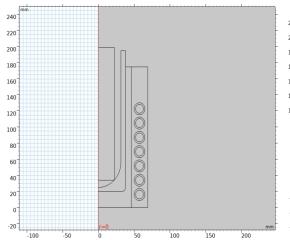
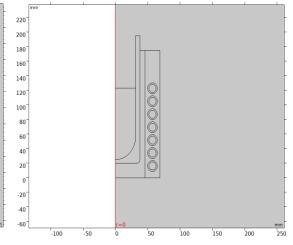


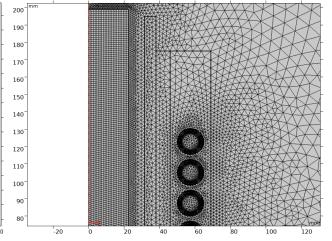
Tabla 1: Propiedades del Inconel 718 en estado Solido en Función de la Temperatura

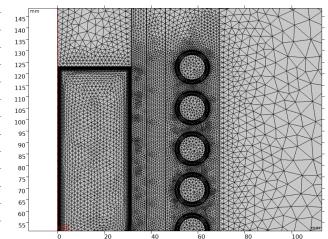
	Símbolo	Unidades	Rango T	Inconel 718	Ref.
Densidad	ρ	g/cm ³	25-1000	8.11-7.71	-
Capacidad Calorífica	C_p	$J/(kg \cdot K)$	25-1000	0.46-0.73	-
Difusividad Termica	α	cm ² /s	25-1000	0.031-0.041	-
Conductividad Térmica	k	$W/(m \cdot K)$	25-1000	11.5-23.1	-
Permeabilidad Relativa	μ_r	_	-	1	-
Permitividad Relativa	ϵ_r	-	-	1	-
Conductividad Eléctrica	σ	$\mu\Omega\cdot cm$	25-1200	1.275-1.385	(Basak, 2003)
Emisividad	ε	-	25-1000	0.35-0.55	(Keller, 2015)

Tabla 2: Propiedades del Inconel 718 en esta Liqudio en Función de la Temperatura

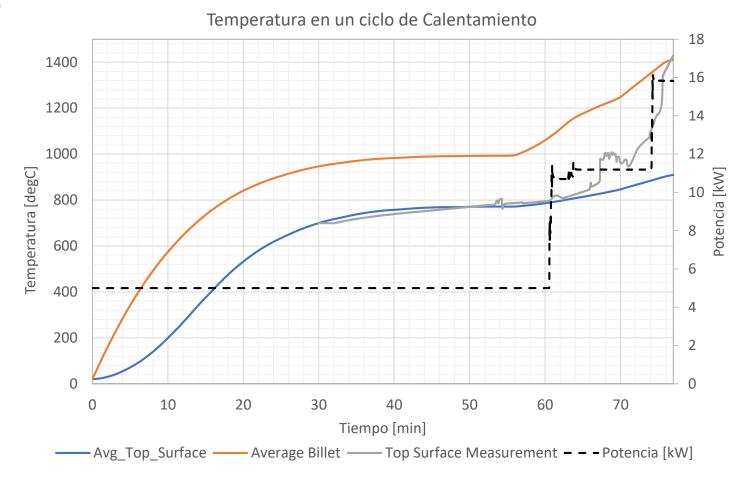

	Símbolo	Unidades	Rango T	Inconel 718	Ref.
Densidad	ρ	g/cm ³	1337-1800	7.58-7.36	(Hosaeus et al. 2001)
Capacidad Calorífica	C_p	J/(kg·K)	-	0.75	(Quested et al. 2009)
Conductividad Térmica	k	$W/(m \cdot K)$	25-1000		(Pichler 2018)
Permeabilidad Relativa	μ_r	-		1	
Permitividad Relativa	ϵ_r	-		1	
Conductividad Eléctrica	σ	$\mu\Omega\cdot cm$	1337-1800	1.472-1.533	(Hosaeus et al. 2001)
Emisividad	ε	-	1337-2000	0.338-0.427	(Cagran et al. 2009)
Viscosidad dinámica	μ	mPa⋅s	1332-1605	6.03 - 3.94	(Valencia 2010)
Tensión Superficial	γ	mN/m	1500	1.866	
Temperatura Solidus	Tsol	degC	-	1310.9	
Temperatura Liquidus	Tliq	degC	-	1359.7	
Calor Latente	Нср	J/g		230.2	





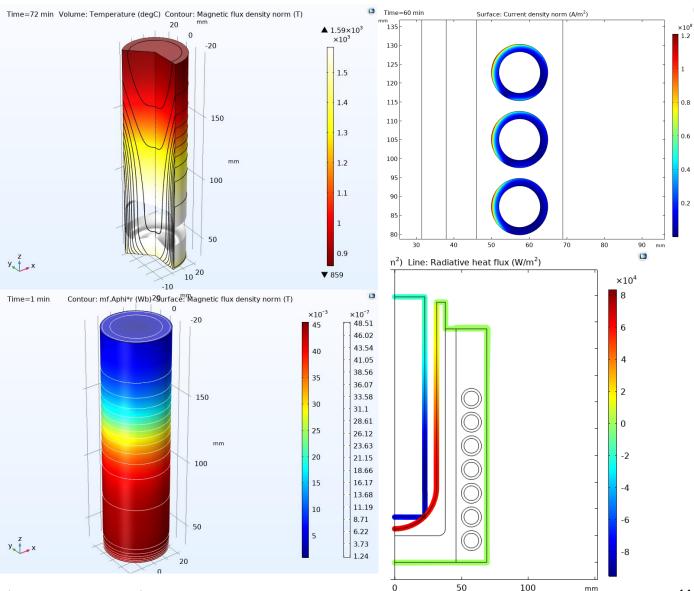

Geometría, Mallado y Estudios

- Simplificacion del problema a resolver aprovechando la simetría de la geometría.
- Malla ajustada a la bobina para capturar los efectos peliculares y de inducción mutua. CFD malla con capas en el contorno para captura la evolución de la velocidad en la superficie de contacto y la transferencia de calor con el crisol.
- Dos estudios separados, estado Solido y Liquido. Frecuencia-Transitorio con inicialización de pared en el flluido.



Resultados Obtenidos Solido

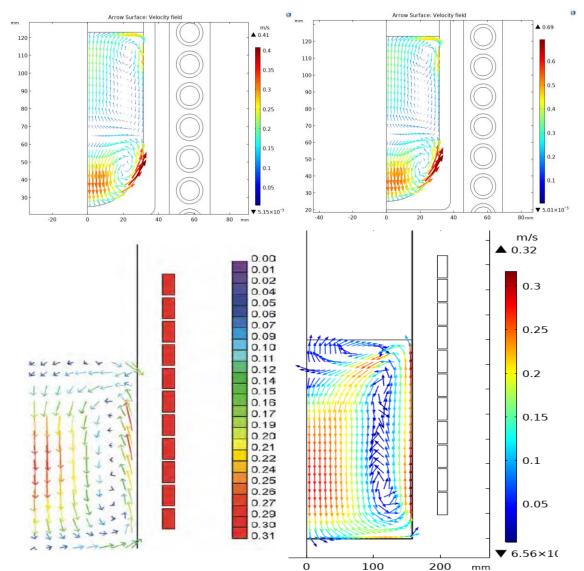
- Frecuencia Transitorio
- Mediciones de corriente y frecuencia para alimentar el modelo.
- Parametrización de la emisividad en función de los datos experimentales para el ajuste
- El modelo de Cosmol Multphysics concuerda con las mediciones ex perimetrales de temperatura.
- Cuando comienza el cambio de fase, el matching termina debido al cambio de fase del material.



uma.es

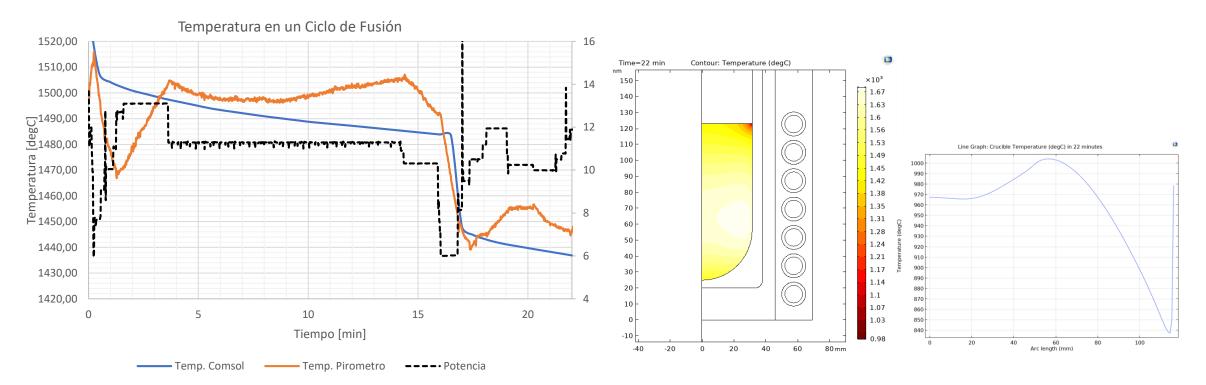
Resultados Obtenidos Solido

- Calentamiento No-Uniforme en la Pieza
- Campo magnético concentrado en la superficie externa e inferior.
- La zona donde empieza a fundirse concuerda con lo observado durante los ensayos.
- El Efecto de la Transferencia de Calor es Considerable y difícil de cuantificar.
- Para el modelizado del cambio de fase se ha incorporado la el subnodo "Phase Change". La temperatura de transición y limites y entalpia de transformación de fase.



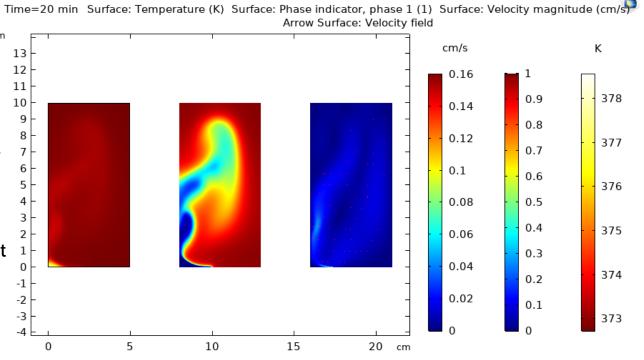
Resultados Obtenidos Liquido

- Condiciones operativas hacen no viable la medición del flujo de manera directa para esta aplicación fluido no es viable.
- Se ha empleado como referencia los resultados publicados por (Kirpo, 2008) donde se miden los patrones de velocidad empleando PMP
- Comparando las mediciones y los resultados del modelo de Comsol se ve que el patrón del flujo y las velocidades normalizadas están en concordancia.
- se han aplicado las mismas condiciones de contorno al modelo propio resolviendo un estudio estacionario de la velocidad.
- Se ha resuelto el perfil de velocidad para una temperatura del metal de 1500°C cuando se le aplica una potencia de 8kW y17 kW.



Resultados Obtenidos Liquido

- Acoplamiento Isothermal Flow flujo con temperatura no uniforme y propiedades variables para modelar la distribución de temperatura en el metal liquido.
- Misma estrategia que en el estado solido para validar la variación de la temperatura en un ciclo de fusión.
- Concordancia general obtenida, discrepacia en la unión superior entre en metal liquido y crisol.



Conclusiones y Líneas Futuras

- Se ha creado un modelo que simula el proceso de calentamiento y fusión de manera separada del proceso
- Existen la necesidad de modelar la superficie libre del menisco debido a que el cálculo de temperaturas en ese punto genera una gran discrepancia con la realidad. Los intentos con mallas fijas y fluido multifase no han dado resultados satisfactorios errores de convergencia, la difícil determinación del ángulo entre las dos fases y la no se conserva la masa total del dominio

 Time=20 min Surface: Temperature (K) Surface: Phase indicator, phase 1 (1) Surface: Velocity magninario de la convergencia de convergencia, la difícil determinación del ángulo entre las dos fases y la no se conserva la masa total del dominio
- Una solución posible seria emplear una malla móvil imponiendo una condición que obligue a conservar la masa y emplear la ecuación de la presión magnética como fuente para la deformación de la malla.
- El calentamiento no uniforme hace que exista una diferenciad de varios minutos entre el comienzo de la fusión y el final
- El peligro de sobrecalentamiento de la aleación requiere de una modelización precisa del cambio de fase, incluyendo las interfaces Heat Transfer in Fluids con la opción de Phase Change y Laminar Flow junto con el acoplamiento Non Isothermal.

