

Diseño y Optimización de una Cámara de Simulación de Atmósfera Espacial

Álvaro Vizcaíno de Julián

Ricardo Torres Cámara

Joan Gray Barceló

Lluís Jofre Cruanyes

31 de Julio de 2020

UNIVERSIDAD DE MÁLAGA

Máster Propio Universitario en Simulación Numérica en Ciencia e Ingeniería con COMSOL Multiphysics

Contenido

- Descripción general
- Fundamento teórico
- Posibles soluciones
- Geometría
- Interfaces físicas y condiciones de contorno
- Malla

Contenido

- Estudios
- Resultados
- Elección en base a los resultados
- Simplificación del Modelo
- App

Descripción general

- Simulación de condiciones espaciales
- Temperaturas
- Presión
- Radiación Solar

Ejemplo de Cámara de Simulación desarrollada por **PROACTIVE R&D**

Diseño y Optimización de una Cámara de Simulación de Atmósfera Espacial

Descripción general

Descripción general

- Alto Vacío (~10e-6 mbar)
- Rango de temperaturas controlable entre
 -150 y 200 °C
- Sistema de traslación XY del porta muestras, con un rango de movimiento de 200 mm por eje.
- El presente trabajo se centra en el estudio del Rango frio de temperaturas.

Fundamento teórico – Transferencia de Calor

• Convección - Ley de Newton:

 $\dot{Q} = A \cdot h \cdot (T_w - T_\infty)$

• Conducción – Ley de Fourier:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{G}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

• Radiación – Ley de Stefan-Boltzmann:

$$E_b(T) = \sigma T^4$$

Fundamento teórico – Dinámica de Fluidos

• Número de Reynolds

$$Re = rac{Vs \cdot Dh}{v}$$
 $v = rac{u}{rho}$

Vs - Velocidad del fluido

- Dh Diámetro hidráulico del circuito de refrigeración
- v Viscosidad cinemática
- u Viscosidad dinámica

rho - Densidad.

Posibles soluciones – Thermal Links

Ventajas:

- Muy buena conductividad térmica.
- Elementos muy flexibles, ideales para integrarlos junto con el sistema de traslación.
- El circuito de refrigeración permanece fijo, con uniones soldadas entre elementos, ideal para entornos de Alto Vacío.

Desventajas:

• Enfriamientos más lentos.

50

-100

100

-100

Posibles soluciones – Refrigeración directa

Ventajas:

• Enfriamientos más rápidos.

Desventajas:

- Suelen ser más rígidas que los Thermal Links.
- Mayor número de conexiones en el circuito de refrigeración, por lo tanto mayor riesgo de fugas y pérdida de vacío.

Geometría – Thermal Links

Geometría – Refrigeración directa

Geometría – Estimación de la Radiación Térmica

Interfaz física – Thermal Links

- ▲ ≥ Turbulent Flow, k-ε 2 (spf2) Fluid Properties 1 Initial Values 1 🕨 🔚 Wall 1 🕨 🔲 Inlet 1 Outlet 1 Hereit Equation View ▲ / Heat Transfer in Solids and Fluids (ht) Image: Solid 1 Fluid 1 Initial Values 1 Thermal Insulation 1 Inflow - Inferior 📑 Inflow - Derecha 📑 Inflow - Izquierda 📑 Inflow 2 Outflow 1 Vessel Heat Flux #f Equation View ▲ 🔆 Surface-to-Surface Radiation (rad) Diffuse Surface 1 Initial Values 1 #f Equation View Multiphysics Nonisothermal Flow 1 (nitf1)
 - Konsoliterinal Flow T (*null*)
 Heat Transfer with Surface-to-Surface Radiation 1 (*htrad1*)

Turbulent Flow Settings

Physical Model

Compressibility:

Weakly compressible flow

Turbulence

Turbulence model type: RANS
Turbulence model: k-ε
Wall treatment: Wall functions

Inlet Settings

Boundary Condition	
Fully developed flow	T
 Fully Developed Flow 	
Average velocity	
O Flow rate	
 Average pressure 	
Average velocity:	
U _{av} V_in	m/s

V_in = 75 m/s

Κ

Interfaz física – Thermal Links

Inflow Inferior Settings

▼ Up	stream Properties	
Upstrea	m temperature:	
T _{ustr}	User defined 🗸	
	T_Fluid	

Inflow Derecha Settings

▼ Up	stream Properties	
Upstrea	am temperature:	
T_{ustr}	User defined	T
	T_Fluid + T_Lost_Refr	k

Inflow Izquierda Settings

• Up	stream Properties	
Upstrea	im temperature:	
T _{ustr}	User defined	▼
	T_Fluid + 2*T_Lost_Refr	К

Vessel Heat Flux Settings

▼ H	eat Flux	
G	eneral inward heat flux	
• c	onvective heat flux	
$q_0 =$	$h \cdot (T_{ext} - T)$	
Heat 1	transfer coefficient:	
Exte	ernal natural convection	•
Vert	tical wall	•
Wall h	neight:	
L	0.5	m
Fluid:		
Air		•
Absol	ute pressure:	
PΑ	User defined 🗸	
	1[atm]	Pa
Extern	al temperature:	
T _{ext}	User defined 🗸	
	293.15[K]	Κ
Он	leat rate	
$q_0 =$	$\frac{P_0}{A}$	

Interfaz física – Thermal Links

▲ ≈ Turbulent Flow, k-ε 2 (spf2) Fluid Properties 1 Initial Values 1 🕨 🔚 Wall 1 🕨 📄 Inlet 1 Outlet 1 Hereit Equation View Heat Transfer in Solids and Fluids (ht) 🕨 🔚 Solid 1 Fluid 1 Initial Values 1 Thermal Insulation 1 Inflow - Inferior Inflow - Derecha 📑 Inflow - Izquierda 📑 Inflow 2 \triangleright Outflow 1 Þ Vessel Heat Flux #f Equation View ▲ 🔆 Surface-to-Surface Radiation (rad) Diffuse Surface 1 Initial Values 1 [₩]f Equation View Multiphysics Nonisothermal Flow 1 (nitf1) ▶ 🔆 Heat Transfer with Surface-to-Surface Radiation 1 (htrad1)

 Am 	bient	
— Ambi	ent temperature	
🗌 Def	ine ambient temperature on each side	
Ambien	t temperature:	
T _{amb}	User defined 🔹	
	293.15[K]	К
— Ambi	ent emissivity	
Def	ine ambient emissivity on each side	
Ambien	t emissivity:	
Black	body	•
▼ Sur	face Emissivity	
🖌 Defi	ine surface emissivity on each side	
Surface	emissivity, upside:	
Boun	dary material 🔹	
ε _u F	rom material	•
Surface	emissivity, downside:	
Boun	dary material 🔹 👻	
ε _d F	rom material	•

Diffuse Surface Settings

Interfaz física – Estimación de la Radiación Térmica

uma.es

Temperature Settings

Temperature

Temperature:

Interfaz física – Estimación de la Radiación Térmica

Heat Transfer in Solids (ht)
 Solid 1
 Initial Values 1
 Thermal Insulation 1
 Temperature 1
 Thermal Insulation 2
 Equation View
 Surface-to-Surface Radiation (rad)
 Diffuse Surface 1
 Initial Values 1
 Equation View
 Multiphysics
 K Heat Transfer with Surface-to-Surface Radiation 1 (htrad1)

uma.es

Difuse Surface Settings

 Ambient 		
Ambient temperature		
Define ambient temperature on each side		
Ambient temperature:		
T _{amb} User defined		
293.15[K] K		
Ambient emissivity		
Define ambient emissivity on each side		
Ambient emissivity:		
Blackbody		
 Surface Emissivity 		
Define surface emissivity on each side		
Surface emissivity:		

ε From material

-

Wall Settings

▼ Bo	undary Condition	
Wall co	ondition:	
No s	lip	•
🖌 Ap	ply wall roughness	
Rough	ness model:	
Sand	l roughness	•
Equiva	lent sand roughness height:	
k _{seq}	0.0015[mm]	m

Inlet Settings

 Boundary Condition 	
Fully developed flow	•
 Fully Developed Flow 	
Average velocity	
O Flow rate	
Average pressure	
Average velocity:	
U _{av} V_in	m/s

V_in = 15 - 75 m/s

Interfaz física – Refrigeración directa

- ▲ ≥ Turbulent Flow, k-ω (spf)
 - 🕨 🔚 Fluid Properties 1
 - 🕨 🔚 Initial Values 1
 - 🕨 🔚 Wall 1
 - 🕨 🔚 Inlet 1
 - 🕨 🔚 Outlet 1
 - ₩f Equation View
- ▲ / ▲ Heat Transfer in Solids and Fluids (ht)
 - 🕨 🔚 Solid 1
 - 🕨 🔚 Fluid 1
 - 🕨 🔚 Initial Values 1
 - 🕨 🔚 Thermal Insulation 1
 - Inflow Initial Conditions
 - 👂 📑 Inflow T input
 - Outflow 1
 - Resistors Heat Flux
 - Radiation Heat Flux
 - Thermal Insulation 2
 EPCB Heat Flux
 - Heat Flux
- ✓ Equation view
 ✓ Heat Transfer in Solids 2 (ht2)
 - 🕨 🔚 Solid 1
 - 🕨 🔚 Initial Values 1
 - 🕨 🔚 Thermal Insulation 1
 - 🕨 🔚 Resistors Heat Flux
 - 🕨 🔚 Radiation Heat Flux
 - Thermal Insulation 2
 - Convective Heat Flux Ref Power 35 m/s
 - Convective Heat Flux Ref Power 55 m/s
 - 👂 🔚 PCB Heat Flux
 - ₩f Equation View
- Multiphysics
 - Nonisothermal Flow 1 (nitf1)

Turbulent Flow Settings

 Physical Model
Compressibility:
Weakly compressible flow -

 Turbulence 	
Turbulence model type:	
RANS]
Turbulence model:	
]
Wall treatment:	
Wall functions -]

Diseño y Optimización de una Cámara de Simulación de Atmósfera Espacial

W

Interfaz física – Refrigeración directa

Inflow Settings	
 Upstream Properties 	
Upstream temperature:	
$T_{\rm ustr}$ User defined \bullet	1
$T_in*step1(t[1/h])+T_amb*(1-step1(t[1/h]))$	k
Specify upstream absolute pressure	

Resistors - Heat Flux Settings

Heat Flux
 General inward heat flux
 Convective heat flux
 $q_0 = h \cdot (T_{ext} - T)$ Heat rate
 $q_0 = \frac{P_0}{A}$ P_0 [P_Res*step1(t[1/h])

W

Interfaz física – Refrigeración directa

Starbulent Flow, k-ω (spf) Fluid Properties 1

- Initial Values 1
- 🕨 🔚 Wall 1
- 🕨 🔲 Inlet 1
- 🕨 🔚 Outlet 1
- #f Equation View
- ▲ / 懂 Heat Transfer in Solids and Fluids (ht)
 - 🕨 🔚 Solid 1
 - 🕨 🔚 Fluid 1
 - 👂 🔚 Initial Values 1
 - 🕨 🔚 Thermal Insulation 1
 - Inflow Initial Conditions
 - 🕨 📑 Inflow T input
 - Outflow 1
 - Resistors Heat Flux
 - 🕨 📑 Radiation Heat Flux
 - Thermal Insulation 2
 - 👂 📑 PCB Heat Flux
 - ₩f Equation View
- ▲ / ▲ Heat Transfer in Solids 2 (ht2)
 - 🕨 🔚 Solid 1
 - 🕨 🔚 Initial Values 1
 - 🕨 🔚 Thermal Insulation 1
 - 🕨 🔚 Resistors Heat Flux
 - 👂 🔚 Radiation Heat Flux
 - Thermal Insulation 2
 - Convective Heat Flux Ref Power 35 m/s
 - Convective Heat Flux Ref Power 55 m/s
 - 🕨 🔚 PCB Heat Flux
 - ∰f Equation View
- Multiphysics
 - 🕨 述 Nonisothermal Flow 1 *(nitf1*)

Radiation Heat Flux Settings

Heat Flux
 General inward heat flux
 Convective heat flux
 $q_0 = h \cdot (T_{ext} - T)$ Heat rate
 $q_0 = \frac{P_0}{A}$ P_0 an1(T-T_amb)

Interfaz física – Refrigeración directa

• Heat Flux • General inward heat flux • Convective heat flux $q_0 = h \cdot (T_{ext} - T)$ • Heat rate $q_0 = \frac{P_0}{A}$ P_0 P_sample*step1(t[1/h]) W

PCB Heat Flux Settings

Malla – Refrigeración directa

Malla Normal

Malla Fina

Malla – Refrigeración directa

Estudio – Thermal Links

- ▲ 👓 Stationary Parametric Fluid simulation
 - 🔁 Step 1: Stationary
 - Solver Configurations
 - Solution 6 (sol6)
 - 👬 Compile Equations: Stationary
 - Dependent Variables 1
 - Stationary Solver 1
 - Direct
 - Advanced
 - 🕨 🗄 Segregated 1
 - AMG, fluid flow variables (spf2)
 - AMG, turbulence variables (spf2)
 - Direct, fluid flow variables (spf2)
 - Direct, turbulence variables (spf2)
- 4 \infty Time dependent Heat Transfer & Radiation
 - 🔌 Step 1: Time Dependent
 - Solver Configurations
 - Solution 17 (sol17)
 - 👯 Compile Equations: Time Dependent
 - Use a state of the state of
 - Time-Dependent Solver 1
 - 📉 Direct
 - 🛓 Advanced
 - E E Segregated 1
 - AMG, Heat Transfer Variables
 - 🔣 Direct, Heat Transfer Variables
 - GMG, Heat Transfer Variables ht (htrad1)
 - GMG, Heat Transfer Variables

Stationary Settings

Physics and Variables Selection

Modify model configuration for study step

**	Physics interface	Solve for	Discretization
	Turbulent Flow, k-ε 2 (spf2)	\checkmark	Physics settings
	Heat Transfer in Solids and F		Physics settings
	Surface-to-Surface Radiatio		Physics settings

- Values of Dependent Variables
- Initial values of variables solved for —
- Settings: Physics controlled
- Values of variables not solved for

Settings: Physics controlled

Store fields in output

Settings: All

Las propiedades físicas del Nitrógeno se consideran **NO DEPENDIENTES** de la

temperatura.

•

Property	Variable	Value	Unit
Density	rho	3.4	kg/m³
Dynamic viscosity	mu	6.96e-6	Pa·s
Thermal conductivity	k_iso ; kii	0.0098	W/(m·K)
Heat capacity at constant pressure	Ср	1040	J/(kg·K)
Ratio of specific heats	gamma	1.47	1

Estudio – Thermal Links

- 4 \infty Stationary Parametric Fluid simulation
 - 🖳 Step 1: Stationary
 - Solver Configurations
 - Solution 6 (sol6)
 - 👬 Compile Equations: Stationary
 - Dependent Variables 1
 - 4 \overline stationary Solver 1
 - 📉 Direct
 - 🛓 Advanced
 - 🕨 🗄 Segregated 1
 - AMG, fluid flow variables (spf2)
 - AMG, turbulence variables (spf2)
 - Direct, fluid flow variables (spf2)
 - 🔣 Direct, turbulence variables (spf2)
- 🔺 \infty Time dependent Heat Transfer & Radiation
 - 📐 Step 1: Time Dependent
 - Solver Configurations
 - Solution 17 (sol17)
 - 💥 Compile Equations: Time Dependent
 - Dependent Variables 1
 - Time-Dependent Solver 1
 - 📉 Direct
 - 놀 Advanced
 - Segregated 1
 - AMG, Heat Transfer Variables
 - 🕅 Direct, Heat Transfer Variables
 - GMG, Heat Transfer Variables ht (htrad1)
 - GMG, Heat Transfer Variables

Time dependent Settings

Values of Dependent Variables

Initial val	ues of variables solved for		
ettings:	Physics controlled	•	
Values of variables not solved for			
ettings:	User controlled	•	
/lethod:	Solution	•	
tudy:	Stationary Parametric - Fluid simulation, Stationary	1	
election:	Automatic	•	
Store fiel	lds in output		
ettings:	All	•	

Physics and Variables Selection

✓ Modify model configuration for study step

Stationary Settings

Las propiedades físicas del Nitrógeno se consideran **DEPENDIENTES** de la temperatura.

Dynamic viscosity	mu	eta(T)	Pais
	ma	4.4	4
Ratio of specific heats	gamma	1.4	1
Heat capacity at constant pressure	Ср	Cp(T)	J/(kg⋅K)
Density	rho	rho(pA,T)	kg/m³
Thermal conductivity	k_iso ;	k(T)	W/(m·K)

Estudio – Refrigeración Directa

Time Dependent Settings

Physics and Variables Selection

Estudio – Refrigeración Directa

泌 Parametric (V_in ; P_Res = 0 W ; T_in = 100 K; P_sample = 15W)	
Parametric Sweep	
Step 1: Turbulent Flow Initial Conditions	
📐 Step 2: Time Dependent	
Solver Configurations	
Solution 1 (sol1)	
👯 Compile Equations: Turbulent Flow Initial Conditions	
Use Arriables 1	
🔺 🛵 Stationary Solver 1	
📉 Direct	
놀 Advanced	
🖻 🗄 Segregated 1	
AMG, fluid flow variables	
🔀 Direct, Heat Transfer Variables	
🔀 Direct, turbulence variables (spf)	
🔣 Direct, fluid flow variables	
AMG, Heat Transfer Variables ht (nitf1)	
GMG, Heat Transfer Variables ht (nitf1)	
AMG, turbulence variables (spf)	
Solution Store 1 (sol2)	
🚟 Compile Equations: Time Dependent	
Use Arrow Dependent Variables 2	
🔺 b Time-Dependent Solver 1	
🔯 Direct	
Advanced	
Segregated 1	
AMG, fluid flow variables	
🔀 Direct, Heat Transfer Variables	
🔀 Direct, turbulence variables (spf)	
🔛 Direct, fluid flow variables	
AMG, Heat Transfer Variables ht (nitf1)	
GMG, Heat Transfer Variables ht (nitf1)	
AMG, turbulence variables (spf)	
Parametric Solutions 1 (sol3)	
V_in=35, T_in=100, P_Res=0, P_sample=15 (sol4)	
V_in=55, T_in=100, P_Res=0, P_sample=15 (sol5)	Diseño y Optimización de una

Values of Dependent Variables

Initial values of variables solved for				
Settings:	User controlled	•		
Method:	Solution	•		
Study:	Parametric (V_in ; P_Res = 0 W ; T_in = 100 K; P_s; 🔹	Ē.		
Solution:	Current			
Jse:	Current			
Time (h):	Automatic	•		
Values of variables not solved for				
Settings:	Physics controlled	•		
Store fie	lds in output			
Settings:	All	•		

Resultados – Estimación radiación térmica

Resultados – Thermal Links

Resultados – Thermal Links

Resultados – Refrigeración directa

Resultados – Refrigeración directa

Elección en base a los resultados

- A la vista de los resultados obtenidos queda descartada la opción de utilizar Thermal Links debido a los altos tiempos de enfriamiento obtenidos, lo que supondrían gastos másicos de Nitrógeno más elevados.
- Se decide, por lo tanto, integrar el circuito de refrigeración en el porta muestras. Con los siguientes puntos a resolver:
 - Encontrar tuberías metálicas lo suficientemente flexibles para integrarlas junto al sistema de traslación.
 - Minimizar el número de conexiones en el circuito de refrigeración.

Una vez seleccionado el método de enfriamiento del Porta Muestras se pretende encontrar una simplificación del modelo que, obteniéndose los resultados más aproximados posibles al modelo completo, permita realizar simulaciones en un **tiempo considerablemente inferior.**

Para ello, se pretende sustituir la simulación del fluido turbulento por una condición de contorno en la que simplemente se indique la **potencia de refrigeración** en función de la diferencia de temperatura entre la entrada y la salida del circuito.

La gráfica de potencia de refrigeración con respecto a la temperatura se obtiene a partir de los resultados de temperatura del fluido a la salida del circuito de refrigeración obtenidos en el modelo completo.

$$P[W] = \dot{m} \left[\frac{kg}{s} \right] \cdot (T_{OUT} - T_{IN})[K] \cdot C_p \left[\frac{J}{kg \cdot K} \right]$$
$$\dot{m} \left[\frac{kg}{s} \right] = S[m^2] \cdot V_s \left[\frac{m}{s} \right] \cdot \rho \left[\frac{kg}{m^3} \right]$$

Una vez obtenida la función P(Tout-Tin), se introduce en COMSOL como una función de

interpolación.

Utilizando la interfaz física "Heat Transfer in Solids", se introducen estas funciones como condiciones de contorno "Heat Flux".

Los resultados obtenidos se ajustan con bastante exactitud a la solución obtenida con

el modelo completo.

Aplicación

JNIVERSIDAD

DE MÁLAGA

- Permite realizar simulaciones rápidas de curvas de enfriamiento y cálculos de gasto másico de Nitrógeno en función de las características de la PCB a testear.
- Cómo parámetros de entrada están las dimensiones de la PCB, la potencia calorífica generada por sus componentes y la velocidad de entrada de fluido.
- Como datos de salida se tienen las gráficas de distribución de temperatura y curvas de enfriamiento, y los datos calculados de Caudal, Tiempo de enfriamiento y Gasto másico de nitrógeno.

