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A B S T R A C T

The additional computation complexity and the time consumed in quantum thermal transport
modeling of a nanometric resistive random access memory cell have proven to be truly rewarded.
This is because the semi-classical and classical approaches lead to results considerably far from the
quantum ones. In addition, in this work, a methodology for characterization of the properties of the
conductive filament has been introduced. For this purpose, simulation results have been combined
with measurable data in the cell as well as with properties of the materials used in its construction.

1. Introduction
The human brain consumes, in mean, an approximate

power of 80 watts Balasubramanian (2021) and it is by far
the most complex biological organ that we know nature
has been able to produce. More than one hundred billion
nerve cells and many more contact points between them
provide our brain with capabilities that no supercomputer
can match to this day Society (2018). Paradoxically, the
brain’s production does not require exotic materials, par-
ticularly metals that are not very abundant in the earth’s
crust. That is, it is built with the dispersion of resources
that we find on the planet, which implies an even more
significant reduction in the energy necessary to concentrate
these scarce materials Alicia Valero (2014). And since no
such energy is required to build a brain, it is extremely energy
efficient, especially if it is compared with the AI’s current
syntactical taxonomy. In addition, if we compare a human
brain with a high-performance computing facility, at the
operation time in terms of energy consumed, its performance
is extraordinary. Especially now that we are witnessing the
transition of a new era in which we will stop managing
energy abundance to start managing scarcity, given that
the maximum production peaks of non-renewable resources
have either already passed or are close Agency, we should
wonder how to maintain the essential digitization of our
societies. In that way, power/energy optimization is critical.
Additionally, we have many reasons to reduce our energy
intake very considerably globally because we are already
dealing with the sixth mass extinction of species Ceballos,
Ehrlich and Dirzo (2017); Cowie, Bouchet and Fontaine
(2022), and climate change is a big threat that is pushing
the atmospheric conditions to climate destabilization. This
might mean the end of the Holocene climate moderation
and the impossibility of predicting the weather, that is,
the end of the agriculture and in this way the end of our
species tooNations (2022); BORDERA JUAN (2022). In
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this context, in which a century of opportunities opens up
for engineers since much of the current technology has to
be redesigned, metal-insulator-metal memory technologies
are presented as an alternative. In particular, we focused
this study on resistive-switching memory devices (RRAMs,
Resistive Random-Access Memories) which are becoming
to replace non-volatile memory or dynamic random-access
memory Hui, Liu, Hodge, Carey, Wen, Torrisi, Galhena,
Tomarchio, Lin, Moreno, Roldan, Koren, Ferrari and Lanza
(2021) as well as their use for artificial intelligence , since
they have shown all neuronal synopsis possibilities mimics
the original low energy consumption Lin, Guha and Ra-
manathan (2018).
The resistive change of the RRAMs is based on the forma-
tion of one or more conductive filaments (CF), which is
the most frequent case, then then device changes between
two resistive states that are obtained by the formation and
destruction of these filaments. In this type of device, after the
filament formation process in a virgin dielectric (Forming
state), there is a change from a High Resistance State (HRS)
to a Low Resistance State (LRS) D. Maldonado (2022).
Afterwards, the device can change back to the HRS by
partially dissolving the CF, which would be RESET pro-
cess and, subsequently, the CF could be regenerated again
during the SET process, going back from the HRS to the
LRS Aldana, García-Fernández, Romero-Zaliz, Jiménez-
Molinos, Gómez-Campos and Roldán (2018); Pérez, Mal-
donado, Acal, Ruiz-Castro, Alonso, Aguilera, Jiménez-
Molinos, Wenger and Roldán (2019). Change HRS to LRS
is name a cycle, where variability cycle to cycle is one of
the most problems that is studying in RRAM today. There
are two main types of devices based on the physical phe-
nomena that underpin the resistive switching operation. If a
conductive filament of metal ions from an active electrode is
formed, they are called Conductive Bridge RAM (CBRAM)
or Electrochemical memories (ECM), if the conductive
filament is formed by grouping oxygen vacancies, they are
called Valence Change Memories (VCM). We can also
classify RRAMs depending on the polarity of the voltage
used to produce the resistance change processes: bipolar
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and unipolar. In unipolar devices based on electrochemical
mechanisms, the creation of CF is related to the generation
of ions at the active electrode interface and their oxidation in
the dielectric until CF is formed. However, the destruction of
CF is mainly based on thermal phenomena. The increase in
temperature in the RESET process increases the probability
of oxidation of the atoms and the rate of diffusion of the
ions, leading to the destruction of the filament. It is known
that ionic diffusion and drift processes allow changing
properties of dielectric/electrode interfaces or forming con-
ductive filaments in the dielectric. These changes modify
the resistance of the devices Funck and Menzel (2021) and
enable resistive switching. In Funck and Menzel (2021) the
authors develop a microscopic picture of the conduction. In
coherence with Funck and Menzel (2021) the simulations
carried out here suggest a conduction limited by a tunneling
through the Schottky barrier at the metal electrode contact.
The thermal effects that occur in resistive switching are
essential to explain most of the operational characteristics
of RRAMs Roldán, González-Cordero, Picos, Miranda,
Palumbo, Jiménez-Molinos, Moreno, Maldonado, Baldomá,
Moner Al Chawa, de Benito, Stavrinides, Suñé and Chua
(2021). That is the reason why a difference in the modeling
and simulation process regarding the temperature reached by
the filament is crucial. In what follows we will demonstrate
how a full quantum approach leads to different results for
maximum filament temperature and therefore such an ap-
proach is essential in modeling and simulating memristors.

2. Modeling by a multi-physics system of
coupled equations
The physical-mathematical modeling of an RRAM cell

requires and a multiphysics approach, in which different cou-
pled equations are solved. It is in this context that we use the
commercial simulation tool COMSOL. But before entering
the subject and beginning to discuss the fundamental ele-
ments, the roles they play and the mathematical way of relat-
ing and describing them, it is necessary to introduce the form
of the computational domain in which all the models will
be taken into consideration. To this end, Fig.1 is presented,
which through the revolution of a plane allows the generation
of a RRAM cell of a cylindrical geometry. The filament
in this cell is shaped like a truncated cone. Assuming that
the transverse dimension is spatially much larger than the
longitudinal one, which coincides with the axis of symmetry
of the cylinder, we will have absolute independence of the
shape of the cell. Since if the cell were square or even
triangular, the effects would be equally defined in a local
region close to the filament. So we have two important issues
to consider. First of all we will carry out a simulation in two
dimensions. This is what COMSOL calls a 2D-axisymmetric
domain, which will allow us to generate 3D solutions with
a reduced number of finite elements. At the same time,
we will truncate that domain with an artificial boundary
condition to extend the transverse direction of the RRAM
cell. Artificial truncation of the domain can be handled in

several ways. Here we employ which COMSOL calls an
Infinite Element Domain node which applies a real-valued
coordinate scaling to a layer of virtual domains surrounding
the physical region of interest. When the dependent variables
vary slowly with radial distance from the center of the
physical domain, the finite elements can be stretched in the
radial direction such that boundary conditions on the outside
of the infinite element layer are effectively applied at a very
large distance from any region of interest, just a re-scaling
of the metric which results in an extension of the domain.
We then consider a two-dimensional domain that has been
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Figure 1: This figure relates the material components with
the labels that allow their identification quickly and unam-
biguously. It also shows the labels that identify the boundaries
between materials or domains, whether real or artificial.

divided into regions. Each of the regions corresponds to a
material component of the cell. That is, in the longitudinal
section of the cell, Fig.1 illustrates the materials that have
been labeled as follows. Ω1 ∪ Ω1′ and Ω4 ∪ Ω4′ are the
metallic contacts. Ω3 ∪ Ω3′ is the oxide that isolates both
contacts. Ω2 is the filament that percolates the insulator and
connects the aforementioned metallic contacts. Naturally,
we use only two (𝑟, 𝑧) of the three Cylindrical coordinates
(𝑟, 𝜃, 𝑧) for a proper description. In these coordinates, arrived
at a certain radial position, we carry out a truncation of the
computational domain, which would extend far beyond that
position. Fig.1 shows this truncation with a cyan vertical
dash line. The artificial region is the one constituted by the
union of domains Ω1′ ∪Ω3′ ∪Ω3′ . We will call each of these
regions depicted in Fig.1 as subdomains. So the Ω1 ∪ Ω1′
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subdomain is tungsten, the Ω4 ∪Ω4′ subdomain is titanium,
the Ω3 ∪ Ω3′ subdomain is oxide of hafnium, and the Ω2
subdomain is the conducting filament. We utilize the labels
of the subdomains to define the borders between them in
such a way that the border between the subdomain Ω1 and
Ω3 is designated as 𝜕Ω13. This boundary 𝜕Ω13 would be
separating tungsten from hafnium oxide in the non-artificial
domain region. When the border is located within the arti-
ficial domain we use the same nomenclature, so the border
that separates the Ω1′ subdomain from the Ω3′ subdomain
within the artificial region would be 𝜕Ω1′3′ . To completing
this assignment of labels, it is necessary to mention that the
zero subdomain Ω0 has been used to identify any region that
is outside the computational domain. In this naming strategy,
when a Ω0 subdomain is in the artificial region a tilde has
been added, being Ω0′ . Finally, mention that when this zero
subdomain is next to a vertical border, in the artificial region,
a bar has been added on the mentioned subdomain, being in
this case Ω0′ .

The fundamental magnitude from which a transition
from a conducting state to an open-circuit state occurs is
related to temperature. But in the determination of this
temperature through the resolution of the heat equation in a
steady-state, we need to determine which is the heat source.
Here we assume its nature is related to the Joule effect and
in this way, to the electric current that circulates through the
cell as well as the electric field that polarized it.

2.1. Electric current and field
In this context the current flowing through the cell has to

be determined. Since the thickness of the insulator, hafnium
of oxide, is in the range of a few nanometers, we understand
that a quantum approach is necessary. We must therefore
consider the tunnel effect current that is added to the con-
ductive or drive current that would circulate through the cell
conducting filament. In the set of equations that follows,
those essential quantities are determined to prescribe the
heat source.

∇ ⋅ 𝐽𝑒(𝑟) =
∑

𝑗
𝑄𝑗,𝑣(𝑟) (1)

𝐽𝑒(𝑟) = 𝜎(𝑟)�⃗�(𝑟) (2)
�⃗�(𝑟) = −∇𝑉 (𝑟) (3)

�̂� ⋅
(

𝐽1(𝑟𝑠) − 𝐽2(𝑟𝑠)
)

=
∑

𝑗
𝑄𝑗,𝑠(𝑟𝑠) (4)

Where 𝐽𝑒(𝑟) is the density of electric current,
∑

𝑗
𝑄𝑗,𝑣 is

the sum of current volumetric sources/sinks, 𝜎(𝑟) is the
electric conductivity, �⃗�(𝑟) is the electric field, 𝑉 (𝑟) is the
electric potential, �̂� is a unit vector at the interface where
a 𝐽1(𝑟𝑠) − 𝐽2(𝑟𝑠) current density balance is injected and
∑

𝑗
𝑄𝑗,𝑠(𝑟𝑠) is the sum of current surface sources/sinks on a

given interface. In brief, the dependent variable of the system
of equations is the voltage, and therefore we are solving
Laplace equation with no current volumetric sources/sinks

contribution ∀𝑗 𝑄𝑗,𝑣 = 0
[

𝐴
𝑚3

]

. The electric field and the
current derive from it, since it is from this electric potential
that they are calculated. On the other hand, the equation
(4) allows us to introduce the quantum tunneling current
into the coupled system of equations. We do this by a
surface current density 𝑄𝑗,𝑠(𝑟𝑠) = �̂� ⋅

(

𝐽1(𝑟𝑠) − 𝐽2(𝑟𝑠)
)

=

𝐽1,𝑧(𝑟𝑠) − 𝐽2,𝑧(𝑟𝑠) ≡ 𝐽𝑄𝑀
(

𝑉𝑄𝑀 (𝑟𝑠),
1

𝐺(𝑟𝑠)

)

placed in one
of the insulator faces 𝑟𝑠 ∈ 𝜕Ω34. A little later we will
see how this quantum tunneling current is determined. Be-
fore introducing the boundary conditions that we apply to
this set of equations, it is important to mention that this
is where we find the core of this contribution. the object
of this work is none other than the determination of the
properties of the conducting filament of the RRAM cell.
These properties essentially refer to its ability to conduct
electricity. The electrical conductivity mathematical model
of the conducting filament is governed parametrically by two
parameters, the filament conductivity 𝜎𝐶𝐹 and resistivity
temperature coefficient 𝛼𝑇 . In the following expression, we
find the mathematical model that prescribes the electrical
conductivity of all the materials/subdomains consider in the
RRAM cell.

𝜎(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑊
(

𝑇 (𝑟)
)

𝑖𝑓 𝑟 ∈ Ω1 ∪ Ω′
1𝜎𝐶𝐹

1+𝛼𝑇 (𝑇 (𝑟)−𝑇0)
𝑖𝑓 𝑟 ∈ Ω2

𝜎𝐻𝑓𝑂2

(

𝑇 (𝑟)
)

𝑖𝑓 𝑟 ∈ Ω3 ∪ Ω′
3

𝜎𝑇 𝑖
(

𝑇 (𝑟)
)

𝑖𝑓 𝑟 ∈ Ω4 ∪ Ω′
4

(5)

Where 𝜎𝑊 (𝑟), 𝜎𝐻𝑓𝑂2
(𝑟) and 𝜎𝑇 𝑖 are the electric conductivity

of tungsten, oxide of hafnium and titanium respectively.
For the metals and the dielectric insulator we use experi-
mental data which are represented in Fig.2. The electrical
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Figure 2: The figure represents the electrical conductivities
of some of the materials used in the RRAM cell versus the
temperature.

conductivity of tungsten plotted versus the temperature in
Fig.2, has been taken from the bibliographical source Desai,
Chu, James and Ho (1984). In the same way, the electrical
conductivity of titanium has been taken from the biblio-
graphical source Dyos and Farrell (2012). Finally, in the
case of hafnium oxide, the electrical conductivity has been
taken from the bibliographical source Callegari, Cartier,
Gribelyuk, Okorn-Schmidt and Zabel (2001).
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2.1.1. Boundary condition Dirichlet
We can consider that in the solution of Poisson equation

the electric potential is prescribed as a Dirichlet-type bound-
ary condition of two types. One type would be imposed
on contours, which would impose the polarization of the
RRAM cell.

𝑉 (𝑟) =
{

0𝑉 𝑖𝑓 𝑟 ∈ 𝜕Ω01 ∪ 𝜕Ω0′1′
1𝑉 𝑖𝑓 𝑟 ∈ 𝜕Ω04 ∪ 𝜕Ω0′4′

(6)

On the other hand, there is a correction to the potential
due to the solution of the Schrodinger-Poisson equation,
which leads to the Dirichlet boundary condition 𝑉 (𝑟) =
𝑉𝑄𝑀 (𝑟) applied on ∀𝑟 ∈ Ω3. This coupled solution of the
Poisson equation together with the Schrodinger equation
slightly modifies the potential and is essential to know the
real distribution of the potential in the insulator. This is
important since the quantum tunneling current depends on
this electrical potential.

2.1.2. Boundary condition Neumann
To give consistency to the solution of the system of

equations we have to impose a current flow on the outer
borders of the RRAM cell, that is, on the side walls. Thus we
impose the following Neumann-type boundary condition on
the outer walls.

𝜕𝑉 (𝑟)
𝜕�̂�

⇒ 𝐽 (𝑟) ⋅ �̂� = 0 if 𝑟 ∈ 𝜕Ω0′1′ ∪ 𝜕Ω0′3′ ∪ 𝜕Ω0′4′ (7)

Hence we have the electric field and the electric current den-
sity both derived from the electric potential that we have just
calculated. This allows us to model the heat sources and deal
with the heat equation. Moreover, the current equations are
coupled with the heat equation since the material properties
in the studied equations depend on temperature.

2.2. Heat equation
In this section we will start from the stationary fil-

ament hypothesis. This means that although there is an
internal dynamic of ions in the filament, when it has been
formed, the process of variation or transport is extremely
slow. Which means that the convective current that could
exist in the filament can be neglected. Thus, the equation
𝜌
(

𝑇 (𝑟)
)

𝐶𝑃
(

𝑇 (𝑟)
)

𝑢(𝑟) ⋅∇𝑇 (𝑟) +∇ ⋅ 𝑞(𝑟) = 𝑄ℎ(𝑟) becomes
a canonical Poisson equation for the temperature since the
present transport speed is assumed to be zero 𝑢(𝑟) ⋍ 0̄. This
leads to the following system of equations to calculate the
temperature.

∇ ⋅ 𝑞(𝑟) = 𝑄ℎ(𝑟) (8)
𝑞(𝑟) = −𝑘(𝑟) ⋅ ∇𝑇 (𝑟) (9)
𝑄ℎ(𝑟) = 𝐽𝑒(𝑟) ⋅ �⃗�(𝑟) (10)

Where 𝑞(𝑟) is the heat flux (also called Fourier current),
𝑄ℎ is the volumetric power source/sink, 𝑘(𝑟) is the tensor
of thermal conductivity, and 𝑇 (𝑟) is the temperature. From
the previously made calculations we can derive the shape
of the volumetric power source 𝑄ℎ(𝑟), from the electric

potential and the electric conductivity. if we consider that
∇𝑉 (𝑟) ⋅ ∇𝑉 (𝑟) = ||∇𝑉 (𝑟)||2 we arrive at the expression:

𝑄ℎ(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑊 (𝑟)||∇𝑉 (𝑟)||2 𝑖𝑓 𝑟 ∈ Ω1 ∪ Ω′
1

𝜎𝐶𝐹 ||∇𝑉 (𝑟)||2

1+𝛼𝑇 (𝑇 (𝑟)−𝑇0)
𝑖𝑓 𝑟 ∈ Ω2

𝜎𝐻𝑓𝑂2
(𝑟)||∇𝑉 (𝑟)||2 𝑖𝑓 𝑟 ∈ Ω3 ∪ Ω′

3
𝜎𝑇 𝑖(𝑟)||∇𝑉 (𝑟)||2 𝑖𝑓 𝑟 ∈ Ω4 ∪ Ω′

4

(11)

Similarly we have to apply boundary conditions to the heat
equation to solve it in the computational domain.

2.2.1. Boundary condition Dirichlet
The Dirichlet-type boundary condition on temperature

is quite simple to implement since it consists of imposing a
known temperature 𝑇0 on the external faces of the metalliza-
tions.

𝑇 (𝑟) =
{

𝑇0 𝑖𝑓 𝑟 ∈ 𝜕Ω01 ∪ 𝜕Ω0′1′
𝑇0 𝑖𝑓 𝑟 ∈ 𝜕Ω04 ∪ 𝜕Ω0′4′

(12)

2.2.2. Boundary condition Neumann
For the case of the boundary condition on heat flux we

need to do a little trick that aims to extend the artificial trun-
cation already discussed previously. The idea is to maintain
the flow of heat that reaches a wall, making it continue to
have the same value in that wall.

𝜕𝑇 (𝑟)
𝜕�̂�

⇒ −𝑞(𝑟) ⋅ �̂� = 𝑞0 if 𝑟 ∈ 𝜕Ω0′1′ ∪ 𝜕Ω0′3′ ∪ 𝜕Ω0′4′ (13)

This is done by setting a power flow per unit area 𝑞0. Where

𝑞0 = �̂� ⋅
⎛

⎜

⎜

⎝

𝑘𝑟𝑟 𝑘𝑟𝜃 𝑘𝑟𝑧
𝑘𝜃𝑟 𝑘𝜃𝜃 𝑘𝜃𝑧
𝑘𝑧𝑟 𝑘𝑧𝜃 𝑘𝑧𝑧

⎞

⎟

⎟

⎠

∇𝑇 (𝑟) = 𝑘𝑟𝑟∇𝑟𝑇 (𝑟).

Rigorously speaking, we would have
(

𝑘𝑟𝑟 + 𝑘𝜃𝑟 + 𝑘𝑧𝑟
)

∇𝑟𝑇 ,
but since it is a symmetric diagonal tensor, things are sim-
plified, leaving the expression seen above.

2.3. Self-consistent model for tunneling current
In the self-consistent modeling for tunneling current

we consider a diagram of energy bands corresponding to
the multilayer that forms the RRAM cell. In the diagram
portrayed in Fig.3 we see that there are two tunneling cur-
rent densities whose difference gives us the total quantum
tunneling current density. The objective of this section will
be to model these currents. In this modeling process the
determination of the potential barrier is the first step. In
Fig.3 we assume a single Fermín level since it is a system in
stationary equilibrium. In this case we have got two different
work functions and a single electrical affinity corresponding
to the insulator, the hafnium oxide. The insulating film is
assumed to be sufficiently thin (in the nano-meter scale),
charge trapping may be ignored Rose (1955); Frank and
Simmons (1967); Zhang (2015). The electrons in the elec-
trodes would see a potential barrier formed between the two
electrodes given by the expression:

Φ (𝑟, 𝑧) = 𝐸𝐹 +𝑊 𝑓𝑊 − 𝜒𝐻𝑓𝑂2
+

(

𝑊 𝑓𝑇 𝑖 −𝑊 𝑓𝑊
)

𝑧
𝐷 (𝑟, 𝑧)

Enrique Moreno : Master MUCOM de la Universidad de Málaga. Page 4 of 10



RRAM characterization

W
Ti

EF EF

EF-qeVQM(r)
qeVQM(r)

VQM(r)

WfW

WfTi

𝛘HfO2

ϕ(z)

Z

E
n
e
rg

yVacuum level
J2 J1

εr

HfO2

D(r) z0z1
z2

z3

Figure 3: Energy band diagram of the considered RRAM cell,
a dissimilar metal-insulator-metal tunneling junction.

+ 𝛷𝑖𝑚𝑎𝑔𝑒 (𝑟, 𝑧) + 𝑞𝑒𝑉𝑄𝑀 (𝑟, 𝑧) + Υ𝑧𝑐 (𝑟, 𝑧) (14)

Where 𝐸𝐹 is the Fermi level, 𝑊 𝑓𝑊 is the work function
of the tungsten, 𝜒𝐻𝑓𝑂2

is electron affinity of the insulator,
𝛷𝑖𝑚𝑎𝑔𝑒 (𝑟, 𝑧) is the image charge potential energy defined
in appendix A, Υ𝑧𝑐 (𝑟, 𝑧) is electron exchange-correlation
potential also defined in appendix A, 𝑞𝑒 is the electron charge
and 𝑉𝑄𝑀 (𝑟, 𝑧) is the Poisson-Shrödinger electric potential
which crosses the quantum barrier.
It is clear that although Fig.3 only shows one spatial dimen-
sion (Z-axis), the direction perpendicular to the dielectric
sandwich, we will have to assume that along the entire
plane of the RRAM cell there is a variation of the quantum
tunneling current. Given the symmetry of revolution we
can reduce the dependency to just two variables. The radial
direction and the direction perpendicular to the potential
barrier, that is, the Z axis.
The probability 𝜑(𝐸′, 𝑟) that an electron with longitudinal
energy 𝐸′, normal to the surface, can penetrate the potential
barrier of heightΦ (𝑟, 𝑧) = is given by the Wentzel-Kramers-
Brillouin-Jeffreys approximation Bates (2013); Zhang (2015);
Banerjee and Zhang (2019),

𝜑(𝐸′, 𝑟) = 𝑒
−2
ℏ ∫ 𝑧2𝑧1

√

2𝑚(Φ(𝑟,𝑧)−𝐸′)𝑑𝑧 (15)

Where 𝑧1 and 𝑧2 are the two roots of Φ (𝑟, 𝑧) − 𝐸′ = 0.
By means of 𝑁1(𝐸′, 𝑟, 𝑧1)𝑑𝐸′, 𝑁2(𝐸′, 𝑟, 𝑧2)𝑑𝐸′ and the
probability𝜑(𝐸′, 𝑟)we determine the current density tunnel-
ing through the barrier from electrode 1, 𝐽1,𝑧

(

𝑟, 𝑧1
)

and the
current density tunneling through the barrier from electrode
2, 𝐽2,𝑧

(

𝑟, 𝑧2
)

. Their expression are as follows:

𝐽1,𝑧
(

𝑟, 𝑧1
)

= 𝑞𝑒 ∫

∞

−∞
𝑁1(𝐸′, 𝑟, 𝑧1)𝜑(𝐸′, 𝑟)𝑑𝐸′ (16)

𝐽2,𝑧
(

𝑟, 𝑧2
)

= 𝑞𝑒 ∫

∞

−∞
𝑁2(𝐸′, 𝑟, 𝑧2)𝜑(𝐸′, 𝑟)𝑑𝐸′ (17)

Where 𝑁1(𝐸′, 𝑟, 𝑧1)𝑑𝐸′ is the total number of electrons
inside the tungsten electrode with longitudinal energy be-
tween 𝐸′ and 𝐸′ + 𝑑𝐸′ impinging on the surface of the
tungsten electrode across a unit area per unit time, and
𝑁2(𝐸′, 𝑟, 𝑧2)𝑑𝐸′ is the total number of electrons inside the
titanium electrode with longitudinal energy between 𝐸′ and
𝐸′+𝑑𝐸′ impinging on the surface of the titanium electrode

across a unit area per unit time, both calculated by free-
electron theory of metal Altmann (2013). These magnitudes
can be calculated using the bellow equations:

𝑁1(𝐸′, 𝑟, 𝑧1)𝑑𝐸′ = Θ1
(

𝑟, 𝑧1
)

𝑙𝑛
⎛

⎜

⎜

⎝

1 + 𝑒
−
𝐸′+𝑞𝑒𝑉𝑄𝑀 (𝑟,𝑧1)−𝐸𝐹

𝑘𝐵𝑇(𝑟,𝑧1)
⎞

⎟

⎟

⎠

(18)

𝑁2(𝐸′, 𝑟, 𝑧2)𝑑𝐸′ = Θ2
(

𝑟, 𝑧2
)

𝑙𝑛

(

1 + 𝑒
− 𝐸′−𝐸𝐹
𝑘𝐵𝑇(𝑟,𝑧2)

)

(19)

Where Θ1
(

𝑟, 𝑧1
)

= 𝑚𝑘𝐵𝑇 (𝑟,𝑧1)
2𝜋2ℏ3 and Θ2

(

𝑟, 𝑧2
)

= 𝑚𝑘𝐵𝑇 (𝑟,𝑧2)
2𝜋2ℏ3

are the number of electrons at temperature 𝑇
(

𝑟, 𝑧1
)

and
𝑇
(

𝑟, 𝑧2
)

respectively, 𝑘𝐵 is the Boltzmann constant, 𝑚 is
the electron mass and ℏ is the Planck reduced constant.
As can be seen in these expressions as well as the ones that
appear in appendices A and B, there is a magnitude that is
essential for the determination of the quantum tunneling cur-
rent. It is the electrical potential 𝑉𝑄𝑀 (𝑟, 𝑧) that is distributed
inside the dielectric insulator. Next subsection is dedicated
to the determination of the potential electric by solving the
coupled Poisson-Shrödinger equation.

2.4. Poisson-Shrödinger equation
Inside the oxide of hafnium (region Ω3) we employ

the mean-field theory Frank and Simmons (1967); Lau,
Chernin, Colombant and Ho (1991); Ang, Kwan and Lau
(2003); Lin Wu and Li (2012); Zhang (2015); Banerjee
and Zhang (2019) to solve the electric potential 𝑉𝑄𝑀 (𝑟).
Therefore, we solve the coupled Shrodinger equation and the
Poisson equation,

∇ ⋅ �⃗�(𝑟) = 𝜌𝑣(𝑟) (20)
�⃗�(𝑟) = 𝜀𝑟𝜀0�⃗�𝑄𝑀 (𝑟) (21)

�⃗�𝑄𝑀 (𝑟) = −∇𝑉𝑄𝑀 (𝑟) (22)
𝐻𝜓(𝑟) = 𝐸𝜓(𝑟) 𝑟 ∈ Ω3 (23)

𝑛𝜌(𝑟) =
∑

𝑚

∑

𝑖

2𝑔𝑖,𝑚 |

|

Ψ𝑖,𝑚(𝑟)||
2

1 + 𝑒
𝐸𝑖,𝑚−𝐸𝐹
𝑘𝐵𝑇

(24)

𝜌𝑣(𝑟) = 𝑞𝑒𝑛𝜌(𝑟)𝑒
𝑒−𝛼

−𝑞𝑒(𝑉𝑄𝑀 (𝑟)−𝑉𝑄𝑀,𝑜𝑙𝑑 (𝑟))
𝑘𝐵𝑇 (𝑟) (25)

Where �⃗�(𝑟) is the electric displacement vector, 𝜀𝑟 is the in-
sulator electric permittivity, 𝐻 is the Hamiltonian operator,
𝜓(𝑟) is the Shrödinger’s wave equation, 𝑔𝑖 is is the valley
degeneracy factor, 𝐸𝑖,𝑚 is the a set of eigenenergies 𝑖 − 𝑡ℎ
which corresponds to a set of normalized wave functions
Ψ𝑖,𝑚(𝑟), both produced by the Schrödinger equation solution.
So in this approach the Hamiltonian operator𝐻 is a function
of 𝑉𝑄𝑀 (𝑟) (see section B). More over, in the Schrödinger
equation the potential energy term is 𝑉𝑒(𝑟) = 𝑞𝑒𝑉𝑄𝑀 (𝑟).
In appendix B 𝑉𝑒(𝑟) is expressed as the element 𝑉𝑒,𝑚𝑚.
So as to determine the density of electrons 𝑛𝜌(𝑟), there
should be a summation over several indexes. For instance,
we can consider the azimuthal quantum number and the
eigenenergy levels (for each azimuthal quantum number).
However, for simplicity in solving this system of coupled
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partial differential equations we have considered a single
azimuthal quantum number (m=0). This issue should not be
closed without commenting that the 𝛼 parameter that appears
in the above equations is a tuning trick used by COMSOL
developers to speed up the method numerical convergence.
Let us now consider the boundary conditions necessary to
solve the system of equations.

2.4.1. Boundary condition Dirichlet
In the first place we have to consider Dirichlet-type

boundary conditions that are applied to the electric potential.
In this case, we fix or imposed the electric potential on the
perimeter of the insulator by means of the external potential
calculated in the entire RRAM cell. The modification over
the global electrical potential that the quantum potential
has in the region, the insulator, is applied by means of a
correction in the global electric potential across of the entire
RRAM cell.

𝑉𝑄𝑀 (𝑟) = 𝑉 (𝑟) if 𝑟 ∈ 𝜕Ω13 ∪ 𝜕Ω23 ∪ 𝜕Ω34 (26)

2.4.2. Boundary condition Neumann
Regarding the Neumann-type boundary conditions, we

specify three conditions. One on the electric potential,
through the electric displacement vector, which must remain
constant at the interface 𝜕Ω3′3′ , and is the following condi-
tion, and two boundary conditions on the Shrodinger wave
equation.

�̂� ⋅ �⃗�(𝑟) = �̂� ⋅ �⃗�0(𝑟) if 𝑟 ∈ 𝜕Ω33′ (27)

On some boundaries we applied zero flux bondary condition.
It imposed that the normal component of the probability
current density is set to zero by the nature of the equation
system.

�̂� ⋅ ∇𝜓(𝑟) = 0 if 𝑟 ∈ 𝜕Ω34 ∪ 𝜕Ω23 ∪ 𝜕Ω13

Finally, to express that the media Ω3 continues into the do-
main Ω3′ we apply a open boundary condition which allows
outgoing waves leave the modeling domainΩ3 without being
reflected back from the external boundaries that enclose Ω3′ .

�̂� ⋅ ∇𝜓(𝑟) = 𝑗

(

1
ℏ

√

2(𝐸 − 𝑉 )
�̂� ⋅ 𝑚−1

𝑒𝑓𝑓 ⋅ �̂�

)

𝜓(𝑟) if 𝑟 ∈ 𝜕Ω33′

In what follows we describe the numerical methodology
necessary to implement the algorithms that solve the physics
described so far.

3. Some implementation issues
The quantum current density is entered into COMSOL

using an MATLAB function. This function calculates the
density of quantum tunneling current 𝐽𝑄𝑀 (𝑟, 𝑧) which is
introduced into the model through the COMSOL bound-
ary condition called Boundary Current Source. Fig.4a) and
Fig.4b) sketch the coupling. This function uses four variables
to enter the local insulator thickness, given by the reciprocal
distance (see appendix A.1), the local voltage that biases

the oxide, and the two temperatures at both metal-insulator
interfaces. The procedure begins by solving a first study, in
a classical way1. From that classic solution we carry out
a second study in which the COMSOL physical module,
introduced in 2.1, is consider assuming a quantum tunneling
current coherent with the global potential. That is, from the
initial potential distribution throughout the entire RRAM
cell, where𝑉𝑄𝑀 (𝑟, 𝑧) = 𝑉 (𝑟, 𝑧) in the regionΩ3. Finally, by
utilizing this semi-classical approach solution as the initial
state of the full quantum approach, that computes the model
2.4 (to determine 𝑉𝑄𝑀 (𝑟, 𝑧)) in a third study, we determine
accurately the main dependent variable, temperature and
voltage in the entire cell. Therefore, the third study repeats
in a loop a steady-study followed by the Pisson-Shrödinge-
study until COMSOL-solvers find convergence.
At this point some details about the MATLAB function
are necessary. The tunneling current density relies upon
four parameters, the bias voltage 𝑉𝑎𝑝𝑝(𝑟) = 𝑉𝑄𝑀

(

𝑟, 𝑧1
)

−
𝑉𝑄𝑀

(

𝑟, 𝑧2
)

, the insulator thickness 𝐷(𝑟), and the adjacent
temperatures 𝑇1

(

𝑟, 𝑧1
)

and 𝑇 2
(

𝑟, 𝑧2
)

(𝑟) to the insulator-
metal faces. However, we depart from a two coordinate map,
(𝑟, 𝑧)which produces some repeated values of the quaternary
set

(

𝑉𝑎𝑝𝑝, 𝐷, 𝑇1, 𝑇2
)

, so we have a surjective application.
This considerably reduces the computation time since there
are redundant data, something that can be avoided if the
MATLAB algorithm/function is used to obtain a cloud of
numerical data that can be entered in COMSOL through a
multivariable interpolation function that provides the same
results. This means considerably less time in the calcula-
tions, although it does not have the same degree of precision.

The reason why we have to choose a distance set 𝐷(𝑟)
has to do with the filament being considered as a part of
the metal contacts. That is, there are free electrons that
are in the filament that can pass the potential barrier and
connect both metals. To obtain the map of coordinates (𝑟, 𝑧)
that correspond to the distances 𝐷(𝑟), we solve the Eikonal
equation that is explained in the appendices A.1. In Fig.5a)
we can see how in the region corresponding to the oxide
we have determined the reciprocal distance and from this
the real distance between the upper wall, which as seen is
formed by the tungsten plus the filament, and the lower wall
corresponding to the titanium. In turn, the translation of the
quantum current density in the map of electrical voltages,
distances, and hot metal-insulator interface is shown in
Fig.5b), which in turn produces a quantum tunnel current
density in the form depicted in Fig.5c).
The results part of this work yields, as we will see in the next
section, significant differences in the currents and, above all,
in the temperatures between a purely quantum approach and
a semi-classical approach. In the characterization procedure
we must obtain a set of solutions for a map of parameters

1In the classical solution there is no tunneling current which leads
to 𝐽𝑄𝑀 = 0̄ and furthermore there is no distribution of charge carri-
ers/electrons in the insulator that modifies the potential in this compu-
tational domain region so that we do not have considered the physics
presented in the subsections 2.3 and 2.4.

Enrique Moreno : Master MUCOM de la Universidad de Málaga. Page 6 of 10



RRAM characterization

ZOOM
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Vapp

b)

Figure 4: a) New map of electric potentials and distances
consistent with the coordinate that comes from the COMSOL
model. b) COMSOL graphical interface in which the quantum
tunneling current density is entered via a current boundary
condition at the Ω34 interface.

𝛼𝑇 and 𝜎𝐶𝐹 . In other words, for each of the combinations of
these parameters we have to solve all the physics (all coupled
equations) described so far. Based on this challenge we write
the following subsection, where we justify why we reduce
the computational domain from three dimensions to only
two.

3.1. A reduction in the problem size leads to an
extremely accurately solution

In Fig.6 we can see how a three-dimensional computa-
tional domain, despite being reduced by its symmetries to a
quarter of its size, still has many more finite elements than a
two-dimensional one. Furthermore, in the two-dimensional
domain we can use an extradense mesh and even subgridings
in the region of interest as seen in Fig.6. This allows us to
solve in seconds a problem that would otherwise require tens
of minutes and even hours. Thus, to carry out a mapping
of the parameters of interest, 𝛼𝑇 and 𝜎𝐶𝐹 , to establish
which of them, simultaneously, verify the measurable and
expected physical conditions. Here what we understand by
measurable magnitudes corresponds to the current density
that passes through the cell and what is measurable in
a laboratory. On the other hand, observing the nanoscale
nature of the filament, we can establish at what temperature
a fusion of the filament would take place and from this
expected behavior, combined with the measurable data of the
electronic current density, determine the desired parameters
that characterize the RRAM cell. We discuss this in more
detail in the results section.

HfO2

W Lz,W

Lr,Cell/2

Lz,HfO2

Lz,TiTi

CF

AB

V

D

mV

a)

b)

c)

d)

r

T[K]

D[nm]
Vapp[V]

x1013A/m2

x1013A/m2

x10171/mm3

Figure 5: a) Reciprocal distance and real distance in the region
of the insulator. b) Quantum Tunneling Current Density as a
Function of Voltages, Insulator Thickness and the temperature
of the hot metal-insulator interface. c) Distribution of quantum
tunneling current density in the region of the RRAM cell where
tunneling takes place. d) Distribution of the volumetric density
of electrons in the oxide.

2D 3D

Figure 6: This figure compares the meshing of two compu-
tational domains. One two-dimensional and the other three-
dimensional for the same physical object.

Another reasonable procedure is the minimum one, that is,
above a certain temperature value we assume that fusion
always takes place, then in the map (𝑎𝑙𝑝ℎ𝑎𝑇 , 𝜎𝐶𝐹 ) we take
the minimum temperature value that has a point in common
(the same pair of coordinates (𝑎𝑙𝑝ℎ𝑎𝑇 , 𝜎𝐶𝐹 )) with the mea-
sured current density curve and in this way we determine the
properties of the filament.

4. Results
We divide this section into two parts. In the first one

we show that there are significant differences regarding the
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temperature of the filament under a semi-classical modeling
approach and another quantum approach. In the second part,
a characterization of the filament parameters (𝑎𝑙𝑝ℎ𝑎𝑇 , 𝜎𝐶𝐹 )
is made from experimental data and simulation data using a
full quantum approach.
While the electrical conductivity has been considered as a
scalar, the thermal conductivity is assumed as a rank two ten-
sor magnitude. In equation (9) there is a dot product between
the thermal conductivity and the temperature gradient. This
is a COMSOL notation which can be consulted in its Physics
Builder Manual. This notation means that we generalize the
thermal conductivity to a tensor which allows us to deal
with an anisotropic media. If a rank two tensor k is thought
of as a matrix �̄� (in certain standard basis), 𝑘 ⋅ 𝑞, for 𝑞 a
(column) vector, is simply �̄�𝑞. However, 𝑞 ⋅ 𝑘 is 𝑞𝑡�̄� with t
denoting transpose. By using index notation, if 𝑘 = 𝑘𝑖𝑗𝑒𝑖𝑒𝑗
and 𝑞 = 𝑞𝑘𝑒𝑘, then 𝑘 ⋅ 𝑞 = 𝑞𝑘𝑘𝑖𝑗𝑒𝑖

(

𝑒𝑗 ⋅ 𝑒𝑘
)

= 𝑞𝑘𝑘𝑖𝑗𝛿𝑗𝑘𝑒𝑖 =
𝑘𝑖𝑗𝑞𝑗 . Fig.7 plots an isotropic thermal conductivity of the
media versus the temperature. Nevertheless, assuming in the
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Figure 7: Thermal conductivities of materials versus tempera-
ture.

best of cases that the manufacture of the insulator has been
carried out by atomic layers deposition, we could prescribe
a better thermal conduction in the plane-𝑟𝜃 than the filament
growing direction (z-axis). Thus, we assign 99% of the
thermal conductivity of halfnium in the transverse plane to
filament growth, while only 90% of this thermal conductivity
is assumed in the direction of filament growth.
In Fig.8a) we can see the potential in a longitudinal section
that passes through the middle of the filament. Likewise, in
Fig.8b) we can see the temperature field in the same lon-
gitudinal section. The differences in terms of temperatures
are considerable and although the spatial distributions are
similar in both cases, in the classical case much higher tem-
peratures are reached than in the quantum case, exceeding
1000 degrees while in the quantum case they do not reach
the 800. This is so under the same problem conditions and
assuming the same properties of the conducting filament.
This was to be expected given that we are considering nano-
sized devices and we do not expect high accuracy from a
classical descriptor. This result deserves to be analyzed in
depth. We understand that the reason why, under the same
state of electrical polarization or applied potential, we obtain
a smaller source of heat is because part of the current passes,
assisted by traps, through the potential or insulating barrier,
so that the current flow on the area of the filament is reduced,

a)

b)

c)

d)

Figure 8: a) Electric potential across the RRAM cell (full-
quantum approach). b) Electric potential across the RRAM
cell (semi-classical approach). c) Temperature field across the
RRAM cell (full-quantum approach). d) Temperature field
across the RRAM cell (semi-classical approach).

thus reducing the allergy delivered in this region. This is
consistent with the literature that actually assumes that the
filament itself is a high-density concatenation of traps that
facilitates quantum tunneling Funck and Menzel (2021).
We understand the process of characterizing a RRAM cell
as the search for a set of parameters that are consistent
with measurable magnitudes or deducible from experimen-
tal measurements. In this work we hypothesize that we have
measured a current density of 1.21 ⋅ 1011 𝐴

𝑚2 and at the same
time we have determined a filament melting temperature
of 956𝐾 . With this information we adjust the parameters
that, considering all the properties of the materials and the
operating conditions of this RRAM cell, best approximate
these experimental data. There are different optimization
techniques that allow this search to be carried out and there
is also the possibility of performing a parametric scan to
interpolate these values. This is exactly what has been done
in Fig.9, where fixing both variables, electric current density
and filament melting temperature, we have represented the
two parameters to be characterized. The magnitudes 𝜎𝐶𝐹
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Figure 9: The red line with squares shows the value of the
electrical conductivity of the filament versus the resistive
temperature coefficient for a given current density. The black
curve with circles illustrates the same parameters relationship
for a given temperature.
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and 𝛼𝑇 are discrete variables that have been taken to the
continuum by means of interpolation. These interpolation
functions have a secant, which is the solution to the problem.
Since at such a point both conditions, on the electric current
density and the filament melting temperature, are verified.
This intersection point of both graphs is represented in blue
as the solution of the problem, and its value appears in Fig.9.

A. Image charge potential energy and
electron exchange-correlation potential

The image-charge potential energy plays a key role in
field emission by lowering the potential barrier, thereby
leading to an increase in current density by orders of
magnitude Biswas and Ramachandran (2017). Here, the
image charge potential energy including the effect of anode
screening has been taken from Il’chenko and Goraychuk
(2001) (it was used in Lin Wu and Li (2012); Zhang (2015);
Banerjee and Zhang (2019)), and its expression so as to
determine it is given by the bellow equation,

𝛷𝑖𝑚𝑎𝑔𝑒 (𝑟, 𝑧) =
−𝑞2𝑒

8𝜋𝜀𝑟𝜀0

(

1
2𝑧

+
∞
∑

𝑛=1

(

𝑛𝐷(𝑟)
𝑛2𝐷2(𝑟) − 𝑧2

)

− 1
𝑛𝐷(𝑟)

)

Where 𝑞𝑒 is the electron charge, 𝜀𝑟𝜀0 is the insulator electric
permittivity and the 𝐷 is the dielectric thickness. In our
case the thickness of the dielectric depends on the radial
position. This is defined as the inverse of the reciprocal
distance 𝐷(𝑟) = 1∕𝐺(𝑟, 𝑧1), a calculation that is explain in
detail in appendix A.1.

To avoid quantum tunneling current leaks, it is recom-
mended to use insulators with high electrical permittivity
since this increases the image charge potential energy. The
electron exchange-correlation potential Υ𝑧𝑐(𝑧) is defined
also in Zhang (2015) as follows,

Υ𝑧𝑐 (𝑟, 𝑧) =
(

𝜖𝑥𝑐(𝑟𝑠 (𝑟, 𝑧))

−
𝑟𝑠 (𝑟, 𝑧)

3
𝑑𝜖𝑥𝑐(𝑟𝑠 (𝑟, 𝑧))

𝑑𝑟𝑠

)

ℏ2

𝑚𝑒𝑎0

𝑟𝑠 (𝑟, 𝑧) =
3
√

3

𝑎0 3
√

4𝜋𝑛𝜌(𝑟)

𝜖𝑥𝑐(𝑟𝑠 (𝑟, 𝑧)) = 𝜖𝑥(𝑟𝑠 (𝑟, 𝑧)) + 𝜖𝑐(𝑟𝑠 (𝑟, 𝑧))

𝜖𝑥(𝑟𝑠 (𝑟, 𝑧)) = −3
4

3

√

( 3
2𝜋

)2( 1
𝑟𝑠 (𝑟, 𝑧)

)

𝜖𝑐(𝑟𝑠 (𝑟, 𝑧)) = −2𝐴
(

1 + 𝑎1𝑟𝑠 (𝑟, 𝑧)
)

ln
(

1 + 1
2𝐴𝜅 (𝑟, 𝑧)

)

𝜅 (𝑟, 𝑧) = 𝑏1
√

𝑟𝑠 (𝑟, 𝑧) + 𝑏2𝑟𝑠 (𝑟, 𝑧) + 𝑏3
√

𝑟3𝑠 (𝑟, 𝑧)

+ 𝑏4𝑟
𝑐
𝑠 (𝑟, 𝑧)

Where 𝑟𝑠 (𝑟, 𝑧) is the local Seitz radius, 𝜖𝑥𝑐(𝑟𝑠 (𝑟, 𝑧)) is the
combined exchange correlation energies, being 𝜖𝑥(𝑟𝑠 (𝑟, 𝑧))
the exchange energy and 𝜖𝑐(𝑟𝑠 (𝑟, 𝑧)) the correlation energy
respectively. On the other hand, in the Kohn-Sham local den-
sity approximation Perdew and Wang (1992) the parameters

𝜅 (𝑟, 𝑧), 𝑐,𝐴, 𝑎1, 𝑏1, 𝑏2, 𝑏3, and 𝑏4 are parametrized constants
obtained using the random phase approximation Perdew and
Wang (1992).

A.1. Eikonal equation:the reciprocal distance to
walls

In COMSOL the Wall Distance interface calculates the
reciprocal distance to selected walls. The value will be small
when the object is far away from the respective walls and
larger when closer. The exact distance,𝐷, to the closest wall
can be found by solving the Eikonal equation |∇𝐷| = 1,
where 𝐷 = 0 on selected walls and and ∇𝐷⋅ = 0 on other
boundaries. COMSOL solves for a modified version of the
Eikonal equation, where the dependent variable is changed
from𝐷 to𝐺 = 1∕𝐷 and an additional smoothing parameter,
𝜎𝜔, is used. This results in the following equation:

∇𝐺(𝑟) ⋅ ∇𝐺(𝑟) + 𝜎𝜔𝐺(𝑟)
(

∇ ⋅ ∇𝐺(𝑟)
)

=
(

1 + 2𝜎𝜔
)

𝐺4(𝑟)

with 𝐺(𝑟) = 𝐺0 = 2∕𝓁𝑟𝑒𝑓 on selected walls and homoge-
neous Neumann conditions on the other boundaries. Here,
𝓁𝑟𝑒𝑓 is a parameter that depends on the geometric shape
and is calculated automatically. This parameter can also be
defined manually, if necessary. The resulting wall distance,
𝐷(𝑟) = 1∕𝐺(𝑟) − 1∕𝐺0, and the direction to the nearest wall
are available in COMSOL as predefined variables.

B. Hamiltonian operator
The Hamiltonian operator of any media can be divided

into two parts. On the one hand, there is the kinetic en-
ergy, which in this case is represented by two terms: the
one corresponding to the kinetic energy of the nucleus

𝐻𝑁𝐾𝐸 = −
𝑁𝑐
∑

𝑛=1

ℏ2

2𝑀𝑛
∇2
𝑛[] and the kinetic energy of the

electrons 𝐻𝐸𝐾𝐸 = −
𝑁𝑒
∑

𝑙=1

ℏ2

2𝑚𝑒
∇2
𝑙 []. The second part which

corresponds to the potential energy is more complex, since
there is the interaction electron-nucleus, electro-electro and
nucleus-nucleus. Thus the energy of attraction between the
nucleus and electrons is given by the expression 𝐻𝐸𝑁𝐴 =

− 1
4𝜋𝜀0

𝑁𝑐
∑

𝑛=1

𝑁𝑒
∑

𝑙=1

𝑧𝑙𝑞𝑒
𝑅𝑛𝑙

[], the energy of repulsion between elec-

trons by the expression 𝐻𝐸𝐸𝑅 = 1
4𝜋𝜀0

𝑁𝑒
∑

𝑙=1

𝑁𝑒
∑

𝑚≠𝑙

𝑞2𝑒
𝑟𝑙𝑚

[] and the

expression of repulsion between nuclei by the expression

𝐻𝑁𝑁𝑅
1

4𝜋𝜀0

𝑁𝑐
∑

𝑛=1

𝑁𝑒
∑

𝑙≠𝑛

𝑧𝑛𝑧𝑙
𝑅𝑛𝑙

[]. All these contributions configure

the expression of the Hamiltonian operator.

𝐻 = 𝐻𝑁𝐾𝐸 +𝐻𝐸𝐾𝐸 +𝐻𝐸𝑁𝐴 +𝐻𝐸𝐸𝑅 +𝐻𝑁𝑁𝑅 (28)

In the simplest cases, we can use these expressions since
we know their variables, but in the most complex cases,
such as the one we are dealing with, we have to model
the effect of the Hamiltonian potential by means of an
approximation. In the mean field theory 𝐻𝐸𝑁𝐴 +𝐻𝐸𝐸𝑅 +
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RRAM characterization

𝐻𝑁𝑁𝑅 ⋍ Φ (𝑟, 𝑧). With this approximation we resort to
two important simplifications. The first is that we neglect
the kinetic energy of atomic nuclei and the second is that
we assume an effective mass for the electrons (Hartree-Fock
approximation Froese Fischer (1987)). This effective mass
will be given by an effective mass tensor. The system of
equations that we actually solve in matrix representation is
given by the following expression:

𝑁
∑

𝑛=1
𝐻𝑚𝑛𝜓

𝑖
𝑛(𝑟) = 𝐸𝑖𝜓 𝑖𝑚(𝑟)

𝐻𝑚𝑚 =

{

𝐻𝑚𝑚 + 𝑉𝑚𝑚
𝐻𝑚𝑚 + ℏ2

2 ∇ ⋅
(

𝑚𝑒𝑓𝑓 ,𝑚𝑚(𝑟)−1 ⋅ ∇
)

𝑉𝑚𝑚 = 𝑉𝑚𝑚 + 𝑉𝑒,𝑚𝑚
𝑚𝑒𝑓𝑓 ,𝑚𝑚 = 𝑚𝑒𝑓𝑓 ,𝑒,𝑚𝑚
𝜓 𝑖𝑛(𝑟, 𝜃, 𝑧) = 𝜓 𝑖𝑛 (𝑟, 𝑧) 𝑒

−𝑗𝑚𝜃

Ψ𝑖
𝑚 =

𝜓 𝑖𝑚
√

𝑁
∑

𝑛=1

⟨

|𝜓 𝑖𝑛|2
⟩
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